Strong convergence for weighted sums of negatively associated arrays

Hanying Liang , Jingjing Zhang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 273 -288.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 273 -288. DOI: 10.1007/s11401-008-0016-y
Article

Strong convergence for weighted sums of negatively associated arrays

Author information +
History +
PDF

Abstract

Let “X ni” be an array of rowwise negatively associated random variables and $T_{nk} = \sum\limits_{i = 1}^k {i^\alpha X_{ni} } $ for α ≥ −1, $S_{nk} = \sum\limits_{\left| i \right| \leqslant k} {\varphi \left( {\tfrac{i}{{n^\eta }}} \right)\tfrac{1}{{n^\eta }}X_{ni} } $ for η ∈ (0, 1], where ϕ is some function. The author studies necessary and sufficient conditions of $\sum\limits_{n = 1}^\infty {A_n P\left( {\mathop {max}\limits_{1 \leqslant k \leqslant n} \left| {T_{nk} } \right| > \varepsilon B_n } \right) < \infty and \sum\limits_{n = 1}^\infty {C_n P\left( {\mathop {\max }\limits_{0 \leqslant k \leqslant m_n } \left| {S_{nk} } \right| > \varepsilon D_n } \right) < \infty } } $ for all ɛ > 0, where A n, B n, C n and D n are some positive constants, m n ∈ ℕ with m n/n η → ∞. The results of Lanzinger and Stadtmüller in 2003 are extended from the i.i.d. case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.

Keywords

Tail probability / Negatively associated random variable / Weighted sum

Cite this article

Download citation ▾
Hanying Liang, Jingjing Zhang. Strong convergence for weighted sums of negatively associated arrays. Chinese Annals of Mathematics, Series B, 2010, 31(2): 273-288 DOI:10.1007/s11401-008-0016-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alam K., Saxena K. M. L.. Positive dependence in multivariate distributions. Commun. Statist. Theor. Meth., 1981, A10: 1183-1196

[2]

Baek J. I., Kim T. S., Liang H. Y.. On the convergence of moving average processes under dependent conditions. Austral. and New Zealand J. Statist., 2003, 45: 331-342

[3]

Baum L. E., Katz M.. Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 1965, 120: 108-123

[4]

Gut A.. Complete convergence for arrays. Periodica Math. Hungarica, 1992, 25: 51-75

[5]

Gut A.. Complete convergence and Cesàro summation for i.i.d. random variables. Probab. Theory Relat. Fields, 1993, 97: 169-178

[6]

Joag-Dev K., Proschan F.. Negative association of random variables with applications. Ann. Statist., 1983, 11: 286-295

[7]

Lanzinger H., Stadtmüler U.. Weighted sums for i.i.d. random variables with relatively thin tails. Bernoulli, 2000, 6: 45-61

[8]

Lanzinger H., Stadtmüller U.. Baum-Katz laws for certain weighted sums of independent and identically distributed random variables. Bernoulli, 2003, 9: 985-1002

[9]

Li D. L., Rao M. B., Jiang T. F. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76

[10]

Liang H. Y., Su C.. Complete convergence for weighted sums of NA sequences. Statist. Probab. Lett., 1999, 45: 85-95

[11]

Liang H. Y.. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325

[12]

Liang H. Y., Baek J. I.. Weighted sums of negatively associated random variables. Austral. and New Zealand J. Statist., 2006, 48(1): 21-31

[13]

Liu J. X.. Asymptotic normality of LS estimate in simple linear EV regression model. Chin. Ann. Math., 2006, 27B(6): 675-682

[14]

Matula P.. A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett., 1992, 15: 209-213

[15]

Niu S. L.. Asymptotics in the laws of the iterated logarithm for random fields (in Chinese). Chin. Ann. Math., 2004, 25A(4): 415-424

[16]

Pruss A. R.. A general Hsu-Robbins-Erdös type estimate of tail probabilities of sums of independent identically distributed random variables. Periodica Math. Hungarica, 2003, 46: 181-201

[17]

Roussas G. G.. Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal., 1994, 50: 152-173

[18]

Shao Q. M.. A comparison theorem on maximum inequalities between negatively associated and independent random variables. J. Theoret. Probab., 2000, 13: 343-356

[19]

Shao Q. M., Su C.. The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl., 1999, 83: 139-148

[20]

You J. H., Xu Q. F., Zhou B.. Statistical inference for partially linear regression models with measurement errors. Chin. Ann. Math., 2008, 29B(2): 207-222

[21]

Zhang Y., Yang X. Y., Dong Z. S.. A general law of precise asymptotics for the complete moment convergence. Chin. Ann. Math., 2009, 30B(1): 77-90

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/