Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations

Gan Yin , Wancheng Sheng

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 611 -622.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 611 -622. DOI: 10.1007/s11401-008-0009-x
Article

Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations

Author information +
History +
PDF

Abstract

The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.

Keywords

Relativistic Euler equations in special relativity / Pressureless relativistic Euler equations / Delta shock waves / Vacuum / Vanishing pressure limits

Cite this article

Download citation ▾
Gan Yin, Wancheng Sheng. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations. Chinese Annals of Mathematics, Series B, 2008, 29(6): 611-622 DOI:10.1007/s11401-008-0009-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anile A. M.. Relativistic Fluids and Magneto-Fluids, Cambridge Monographs on Mathematical Physics, 1989, Cambridge: Cambridge University Press

[2]

Chang T., Hsiao L.. The Riemann problem and interaction of waves in gas dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, 1989, Essex: Longman Scientific and Technical

[3]

Chen G. Q., Li Y. C.. Relativistic Euler equations for isentropic fluids: Stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys., 2004, 55: 903-926

[4]

Chen G. Q., Li Y. C.. Stability of Riemann solutions with large oscillation for the relativistic Euler equations. J. Diff. Eqs., 2004, 202: 332-353

[5]

Chen, G. Q. and LeFloch, P., Existence theory for the relativistic Euler equations, preprint, 2005.

[6]

Chen G. Q., Liu H. L.. Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations. SIAM J. Math. Anal., 2003, 34: 925-938

[7]

Chen G. Q., Liu H. L.. Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Phys. D., 2004, 189(1–2): 141-165

[8]

Chen J.. Conserbation laws for the relativistic p-system. Comm. PDE, 1995, 20: 1605-1646

[9]

Courant R., Friedrichs K. O.. Sepersonic Flow and Shock Waves, 1948, New York: Wiley

[10]

Hsu C. H., Lin S. S., Makino T.. On the relativistic Euler equation. Meth. Appl. Anal., 2001, 8: 159-207

[11]

Hsu C. H., Lin S. S., Makino T.. On spherically symmetric solutions of the relativistic Euler equation. J. Diff. Eqs., 2004, 201: 1-24

[12]

Li J. Q., Zhang T., Yang S.. The two-dimensional Riemann problem in gas dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 98, 1998, Harlow: Longman Scientific and Technical

[13]

Li J. Q.. Note on the compressible Euler equations with zero temperature. Appl. Math. Lett., 2001, 14: 519-523

[14]

Li, Y. C., Global Entropy Solutions to the Relativistic Euler Equations, Hyperbolic Problems: Theory, Numerics and Applications, Osaka, 2004, Yokohama Publishers, Pub. April, 2006, 165–172.

[15]

Li Y. C., Feng D. M., Wang Z. J.. Global entropy solutions to the relativistic Euler equations for a class of large initial data. Z. Angew. Math. Phys., 2005, 56: 239-253

[16]

Li Y. C., Shi Q.. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Comm. Pure Appl. Anal., 2005, 4: 763-778

[17]

Li Y. C., Wang L. B.. Global stability of solutions with discontinuous initial data containing vacuum states for the relativistic Euler equations. Chin. Ann. Math., 2005, 26B(4): 491-510

[18]

Li Y. C., Wang A.. Global entropy solutions of the Cauchy problem for the nonhomogeneous relativistic Euler equations. Chin. Ann. Math., 2006, 27B(5): 473-494

[19]

Li Y. C., Geng Y.. Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations. Z. Angew. Math. Phys., 2006, 57(6): 960-983

[20]

Li Y. C., Ren X.. Non-relativistic global limits of entropy solutions to the relativistic Euler equations with gamma-law. Comm. Pure Appl. Anal., 2006, 5: 963-979

[21]

Liang E. P. T.. Relativistic simple waves: Shock damping and entropy production. Astrophys. J., 1977, 211: 361-376

[22]

Makino T., Ukai S.. Local smooth solutions of the relativistic Euler equation. J. Math. Kyoto Univ., 1995, 35: 105-114

[23]

Makino T., Ukai S.. Local smooth solutions of the relativistic Euler equation, II. Kodai Math. J., 1995, 18: 365-375

[24]

Mizohata K.. Global solutions to the relativistic Euler equation with spherical symmetry. Japan J. Indust. Appl. Math., 1997, 14: 125-157

[25]

Pant, V., On I. Symmetry breaking under pertubation and II. Relatibistic fluid dynamics, Ph. D. Thesis, University of Michigan, 1996.

[26]

Pant V.. Global entropy solutions for isentropic relatibistic fluid dynamics. Comm. Partial Diff. Eqs., 1996, 21: 1609-1641

[27]

Sheng W. C., Zhang T.. The Riemann problem for the transportation equations in gas dynamics. Mem. Amer. Math. Soc., 1999, 137(654): 1-77

[28]

Smoller J.. Shock Waves and Reaction Diffusion Equations, 1983, Berlin, Heidelberg, New York: Springer

[29]

Smoller J., Temple B.. Global solution of the relativistic Euler equations. Comm. Math. Phys., 1993, 156: 67-99

[30]

Thompson K.. The special relativistic shock tube. J. Fluid Mech., 1986, 171: 365-375

[31]

Thorne K. S.. Relativistic shocks: The Taub adiabatic. Astrophys. J., 1973, 179: 897-907

[32]

Weinberg S.. Gravitation and Cosmology: Principles and Spplications of the General Theory of Relativity, 1972, New York: Wiley

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/