On a linear equation arising in isometric embedding of torus-like surface

Chunhe Li

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1) : 27 -38.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1) : 27 -38. DOI: 10.1007/s11401-008-0005-1
Article

On a linear equation arising in isometric embedding of torus-like surface

Author information +
History +
PDF

Abstract

The solvability of a linear equation and the regularity of the solution are discussed. The equation is arising in a geometric problem which is concerned with the realization of Alexandroff’s positive annul in R 3.

Keywords

Alexandroff’s positive annul / Weighted norm / Regularity

Cite this article

Download citation ▾
Chunhe Li. On a linear equation arising in isometric embedding of torus-like surface. Chinese Annals of Mathematics, Series B, 2009, 30(1): 27-38 DOI:10.1007/s11401-008-0005-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexandroff A. D.. On a class of closed surfaces. Mat. Sb., 1938, 4: 69-77

[2]

Bernstein S.. Sur la nature analytique des solutions des ėquations aux dériveés partielles du second ordre. Math. Ann., 1904, 59: 20-76

[3]

Morrey C. B., Nirenberg N.. On the analyticity of the solution to linear elliptic system of partial differential equations. Comm. Pure. Appl. Math., 1957, 10: 271-290

[4]

Gu C. H., Hong J. X.. Some developments of the theory of mixed PDEs. Part. Diff. Eqs. Chin., 1992, 288: 55-66

[5]

Hong J. X.. BVPs for differential operators with characteristic degenerate surfaces. Chin. Ann. Math., 1984, 5B(3): 277-292

[6]

Hong J. X.. Microanalysis on a class of multicharacteristic operators. Acta Math. Sinica, 1985, 28: 23-32

[7]

Hong J. X.. L 2-hypoellipticity for a class of operators mixed type. Chin. Ann. Math., 1988, 9B(2): 184-188

[8]

Li, C. H., The analyticity of the solution to a class of degenerate elliptic equation, to appear.

[9]

Nirenberg L.. Langer R. E.. In nonlinear problems, 1963, Madison: University of Wisconsin Press 177-193

[10]

Nirenberg L.. The Weyl problem and Minkowski problem in differential geometry in the large. Comm. Pure. Appl. Math., 1953, 6: 103-156

[11]

Weyl H.. Über die Bestimmheit einer geschlossenen konvex Fläche durch ihr Linienelement. Vierteljahresschrift der nat.-Forsch. Ges. Zürich, 1936, 31: 645-680

[12]

Yau S. T.. Lecture on Differential Geometry, 1977, Berkeley: Univ. of California Press

[13]

Han Q., Hong J. X.. Isometric embedding of Riemannian manifolds in Euclidean spaces. Mathematical Surveys and Monographs, 2006, Providence, RI: A. M. S. 167-189

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/