Stable rank one and real rank zero for crossed products by finite group actions with the tracial Rokhlin property

Qingzhai Fan , Xiaochun Fang

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2)

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) DOI: 10.1007/s11401-007-0563-7
Article

Stable rank one and real rank zero for crossed products by finite group actions with the tracial Rokhlin property

Author information +
History +
PDF

Abstract

The authors prove that the crossed product of an infinite dimensional simple separable unital C*-algebra with stable rank one by an action of a finite group with the tracial Rokhlin property has again stable rank one. It is also proved that the crossed product of an infinite dimensional simple separable unital C*-algebra with real rank zero by an action of a finite group with the tracial Rokhlin property has again real rank zero.

Keywords

C*-algebra / Stable rank one / Real rank zero

Cite this article

Download citation ▾
Qingzhai Fan, Xiaochun Fang. Stable rank one and real rank zero for crossed products by finite group actions with the tracial Rokhlin property. Chinese Annals of Mathematics, Series B, 2009, 30(2): DOI:10.1007/s11401-007-0563-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Connes A.. Out conjugcy class of automorphisms of factors. Ann. Sci. Ecole Norm. Sup., 1975, 8: 383-420

[2]

Fan Q. Z., Fang X. C.. C*-algebras of tracial stable rank one (in Chinese). Acta Math. Sinica, 2005, 48(5): 929-935

[3]

Fan Q. Z., Fang X. C.. Stable finite property of C*-algebras with tracial stable rank one and weakly tracial stable rank one (in Chinese). Chin. Ann. Math., 2007, 28A(3): 403-413

[4]

Fan, Q. Z. and Fang, X. C., The cancellation property of simple C*-algebras with tracial stable rank one (in Chinese), Adv. in Math., to appear.

[5]

Herman R., Ocneanu A.. Stability for integer actions on UHF C*-algebra. J. Funct. Anal., 1984, 59: 132-144

[6]

Jeong J., Osaka H.. Extremal rich C*-crossed products and the cancellation property. J. Austral. Math. Soc., 1998, 64A: 285-301

[7]

Kishimoto A.. The Rohlin property for shifts on UHF algebra. J. Reine Angew. Math., 1995, 465: 183-196

[8]

Lin H. X.. The tracial topological rank of C*-algebras. Proc. London Math. Soc., 2001, 83(1): 199-234

[9]

Lin H. X.. An Introduction to the Classification of Amenable C*-algebras, 2001, Singapore: World Scientific

[10]

Lin H. X.. The Rokhlin property for automorphism on simple C*-algebra. Contemp. Math., 2006, 414: 189-215

[11]

Lin H. X., Osaka H.. The Rohlin property and the tracial topological rank. J. Funct. Anal., 2005, 218: 475-494

[12]

Osaka H., Phillips N. C.. Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergodic Theory Dynam. Systems, 2006, 26(5): 1579-1621

[13]

Osaka, H. and Phillips, N. C., Crossed products by finite group actions with the Rokhlin property. arXiv. org math. OA/0704.3651.

[14]

Phillips, N. C., Crossed products by finite cyclic group actions with the tracial Rokhlin property. arXiv.org math. OA/0306410.

[15]

Phillips, N. C., The tracial Rokhlin property for actions of finite groups on C*-algebras. arXiv. org math. OA/0609782.

[16]

Rordam M.. Classification of certain infinite simple C*-algebra. J. Funct. Anal., 1995, 131: 415-458

[17]

Yao H. L., Hu S. W.. C*-algebras of tracial real rank zero. J. East Chin. Norm. Univ., Natural Science Edition, 2004, 2: 5-12

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/