Periodic solutions of evolution variational inequalities — a method of guiding functions

Samir Adly , Daniel Goeleven , Michel Théra

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 261 -272.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 261 -272. DOI: 10.1007/s11401-007-0540-1
Article

Periodic solutions of evolution variational inequalities — a method of guiding functions

Author information +
History +
PDF

Abstract

This paper focuses on a part of the presentation given by the third author at the Shanghai Forum on Industrial and Applied Mathematics (Shanghai 2006). It is related to the existence of a periodic solution of evolution variational inequalities. The approach is based on the method of guiding functions.

Keywords

Variational inequality / Differential inclusion / Topological degree / Guiding function / Periodic solution

Cite this article

Download citation ▾
Samir Adly, Daniel Goeleven, Michel Théra. Periodic solutions of evolution variational inequalities — a method of guiding functions. Chinese Annals of Mathematics, Series B, 2009, 30(3): 261-272 DOI:10.1007/s11401-007-0540-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adly S., Goeleven D., Théra M.. A continuation method for a class of periodic evolution variational inequalities. Chin. Ann. Math., 2007, 28B(6): 629-650

[2]

Baiocchi C., Capelo A.. Variational and Quasi-variational Inequalities: Applications to Free Boundary Problems, 1984, New York: John Wiley and Sons

[3]

Brezis H., Stampacchia G.. Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France, 1968, 96: 153-180

[4]

Brezis H.. Problèmes unilatéraux. J. Math. Pures Appl., 1972, 51: 1-168

[5]

Brezis H.. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1973, Amsterdam: North-Holland

[6]

Cottle, R. W., Nonlinear Programs with Positively Bounded Jacobians, Ph.D Thesis, University of California at Berkley, 1964.

[7]

Facchinei F., Pang J.-S.. Finite Dimensional Variational Inequalities and Complementarity Problems, 2003, New York: Springer-Verlag

[8]

Giannessi F.. Constrained Optimization and Image Space Analysis, 2005, New York: Springer-Verlag

[9]

Glowinski R., Lions J. L., Trémolières R.. Analyse numérique des inéquations variationnelles, Tome 1: Théorie générale premières applications. Méthodes Mathématiques de l’Informatique, Vol. 5, 1976, Paris: Dunod

[10]

Hiriart-Urruty J. B., Lemaréchal C.. Fundamentals of Convex Analysis, 1993, Berlin: Springer-Verlag

[11]

Krasonel’skii M. A.. The Operator of Translation along the Trajectories of Differential Equations (in Russian), 1966, Moscow: Nauka Translations of Mathematical Monographs, Vol. 19, A. M. S., Providence, RI, 1968

[12]

Kinderlehrer D., Stampacchia G.. An Introduction to Variational Inequalities and Their Applications, 1980, New York: Academic Press

[13]

Krasonel’skii M. A., Zabreiko P. P.. Geometrical Methods of Nonlinear Analysis (in Russian), 1975, Moscow: Nauka

[14]

Lions J. L.. The work of G. Stampacchia in variational inequalities, Variational Inequalities and Complementarity Problems, 1980, Chichester: Wiley 1-24

[15]

Lions J. L., Stampacchia G.. Inéquation variationnelles non coercives. C. R. Acad. Sci., 1965, 261: 25-27

[16]

Lloyd N. G.. Degree Theory, 1978, Cambridge: Cambridge University Press

[17]

Mawhin J.. Granas A., Frigon M., Sabidussi G.. Continuation theorems and periodic solutions of ordinary differential equations, Topological Methods in Differential Equations and Inclusions. NATO Sci. Ser. C, Math. Phys. Sci., 472, 1994, Dordrecht: Kluwer Academic Publishers

[18]

Robinson S. M.. Generalized equations and their solutions, part I: Basic theory. Math. Progr. Study, 1979, 10: 128-141

[19]

Rockafellar R. T.. Convex Analysis, 1968, Princeton: Princeton University Press

[20]

Stampacchia G.. Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci., 1964, 258: 4413-4416

[21]

Showalter R. E.. Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, Vol. 49, 1997, Providence, RI: A. M. S.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/