Smoothness of the functional law generated by a nonlinear SPDE

Marta Sanz-Solé , Paul Malliavin

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 113 -120.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 113 -120. DOI: 10.1007/s11401-007-0508-1
Article

Smoothness of the functional law generated by a nonlinear SPDE

Author information +
History +
PDF

Abstract

The authors consider a stochastic heat equation in dimension d = 1 driven by an additive space time white noise and having a mild nonlinearity. It is proved that the functional law of its solution is absolutely continuous and possesses a smooth density with respect to the functional law of the corresponding linear SPDE.

Keywords

Stochastic heat equation / Probability law / Absolute continuity / Divergence operator / Gradient operator

Cite this article

Download citation ▾
Marta Sanz-Solé, Paul Malliavin. Smoothness of the functional law generated by a nonlinear SPDE. Chinese Annals of Mathematics, Series B, 2008, 29(2): 113-120 DOI:10.1007/s11401-007-0508-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Airault H., Malliavin P., Ren J.. Geometry of foliations on the Wiener space and stochastic calculus of variations. C. R. Math. Acad. Sci. Paris, 2004, 339(9): 637-642

[2]

Carmona R., Nualart D.. Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields, 1988, 79(4): 469-508

[3]

Da Prato, G. and Zabczyck, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1992.

[4]

Gaveau B., Mouliner J.-M.. Régularité des mesures et perturbations stochastiques de champs de vecteurs sur des espaces de dimension infinie, 1985, 21: 593-616

[5]

Márquez-Carreras D., Mellouk M., Sarrà M.. On stochastic partial differential equations with spatially correlated noise: smoothness of the law. Stoch. Proc. Appl., 2001, 93: 269-284

[6]

Mattingly J., Bahtkin Y.. Malliavin calculus for infinite-dimensional systems with additive. J. Funct. Anal., 2007, 249(2): 307-353

[7]

Millet A., Sanz-Solé M.. A stochastic wave equation in two space dimensions: smoothness of the law. Annals of Probab., 1999, 27: 803-844

[8]

Moulinier J.-M.. Absolute continuité de probabilités de transition par rapport à une mesure gaussienne dans un space de Hilbert. J. Funct. Anal., 1985, 64: 275-295

[9]

Nualart D., Sanz-Solé M.. Malliavin calculus for two-parameter Wiener functionals. Z. Wahrsch. Verw. Gebiete, 1985, 70(4): 573-590

[10]

Ocone D.. Stochastic calculus of variations for stochastic partial differential equations. J. Funct. Anal., 1988, 79(2): 288-331

[11]

Pardoux E., Zhang T.. Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal., 1993, 112(2): 447-458

[12]

Quer-Sardanyons Ll., Sanz-Solé M.. Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal., 2004, 206(1): 1-32

[13]

Quer-Sardanyons Ll., Sanz-Solé M.. A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli, 2004, 10(1): 165-186

[14]

Walsh J. B.. Hennequin P. L.. An introduction to Stochastic partial differential equations. ÉEcole d’été de Probabilités de Saint-Flour, XIV, 1986, Berlin: Springer-Verlag 265-439

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/