Toeplitz and Hankel products on Bergman spaces of the unit ball

Yufeng Lu , Chaomei Liu

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 293 -310.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 293 -310. DOI: 10.1007/s11401-007-0492-5
Article

Toeplitz and Hankel products on Bergman spaces of the unit ball

Author information +
History +
PDF

Abstract

The authors give some new necessary conditions for the boundedness of Toeplitz products $T_f^\alpha T_{\bar g}^\alpha $ on the weighted Bergman space A α 2 of the unit ball, where f and g are analytic on the unit ball. Hankel products H f H g * on the weighted Bergman space of the unit ball are studied, and the results analogous to those Stroethoff and Zheng obtained in the setting of unit disk are proved.

Keywords

Weighted Bergman space / Unit ball / Toeplitz operator / Hankel operator / Berezin transform

Cite this article

Download citation ▾
Yufeng Lu, Chaomei Liu. Toeplitz and Hankel products on Bergman spaces of the unit ball. Chinese Annals of Mathematics, Series B, 2009, 30(3): 293-310 DOI:10.1007/s11401-007-0492-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rudin W.. Real and Complex Analysis, 1966, New York: McGraw-Hill

[2]

Sarason D.. Havin V. P., Nikolski N. K.. Products of Toeplitz operators, Linear and Complex Analysis Problem Book 3, 1994, Berlin: Springer-Verlag 318-319

[3]

Treil S., Volberg A., Zheng D.. Hilbert transform, Toeplitz operators and Hankel operators, and invariant A∞ weights. Rev. Mat. Iberoamericana, 1997, 13(2): 319-360

[4]

Cruz-Uribe D.. The invertibility of the product of unbounded Toeplitz operators. Integr. Eqs. Oper. Th., 1994, 20(2): 231-237

[5]

Zheng D.. The distribution function inequality and products of Toeplitz operators and Hankel operators. J. Funct. Anal., 1996, 138(2): 477-501

[6]

Nazarov, F., A counterexample to Sarason’s conjuecture, preprint. www.math.msu.edu/fedja/perp.html

[7]

Stroethoff K., Zheng D.. Products of Hankel and Toeplitz operators on the Bergman space. J. Funct. Anal., 1999, 169(1): 289-313

[8]

Stroethoff K., Zheng D.. Bounded Toeplitz products on the Bergman space of the polydisk. J. Math. Anal. Appl., 2003, 278(1): 125-135

[9]

Stroethoff K., Zheng D.. Bounded Toeplitz products on Weighted Bergman spaces. J. Oper. Th., 2008, 59(2): 277-308

[10]

Stroethoff K., Zheng D.. Bounded Toeplitz products on Bergman spaces of the unit ball. J. Math. Anal. Appl., 2007, 325(1): 114-129

[11]

Park J. D.. Bounded Toeplitz products on the Bergman space of the unit ball in ℂn. Integr. Eqs. Oper. Th., 2006, 54(4): 571-584

[12]

Pott S., Strouse E.. Products of Toeplitz operators on the Bergman spaces A α 2. St. Petersburg Math. J., 2007, 18(1): 105-118

[13]

Rudin W.. Function Theory in the Unit Ball in ℂn, 1980, New York: Springer-Verlag

[14]

Zhu K.. Spaces of Holomorphic Functions in the Unit Ball, 2005, New York: Springer-Verlag

[15]

Lu Y. F., Shang S. X.. Bounded Hankel products on the Bergman space of the polydisk. Can. J. Math., 2009, 60(1): 190-204

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/