Blow-up for a semi-linear advection-diffusion system with energy conservation

Dapeng Du , Jing Lü

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 433 -446.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 433 -446. DOI: 10.1007/s11401-007-0474-7
Article

Blow-up for a semi-linear advection-diffusion system with energy conservation

Author information +
History +
PDF

Abstract

The authors study radial solutions to a model equation for the Navier-Stokes equations. It is shown that the model equation has self-similar singular solution if 5 ≤ n ≤ 9. It is also shown that the solution will blow up if the initial data is radial, large enough and n ≥ 5.

Keywords

Navier-Stokes equations / Self-similar singular solutions / Blow-up

Cite this article

Download citation ▾
Dapeng Du, Jing Lü. Blow-up for a semi-linear advection-diffusion system with energy conservation. Chinese Annals of Mathematics, Series B, 2009, 30(4): 433-446 DOI:10.1007/s11401-007-0474-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Budd C. J., Qi Y. W.. The existence of bounded solutions of a semilinear elliptic equation. J. Diff. Eqs., 1989, 82(2): 207-218

[2]

Escauriaza L., Seregin G., Šverák V.. Backward uniqueness for the heat operator in half-space. Algebra i Analiz, 2003, 15(1): 201-214

[3]

Giga Y., Kohn R. V.. Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 1985, 38(3): 297-319

[4]

Lepin L. A.. Self-similar solutions of a semilinear heat equation (in Russian). Mat. Modle., 1990, 2(3): 63-74

[5]

Lepin L. A.. Spectra of eigenfunctions for a semilinear heat equation. Dokl. Akad. Nauk SSSR, 1990, 311(5): 1049-1051

[6]

Plecháč P., Šverák V.. On self-similar singular solutions of the complex Ginzburg-Landau equation. Comm. Pure Appl. Math., 2001, 54(10): 1215-1242

[7]

Plecháč P., Šverák V.. Singular and regular solutions of a non-linear parabolic system. Nonlinearty, 2003, 16(6): 2083-2097

[8]

Troy W. C.. The existence of bounded solutions of a semilinear heat equation. SIAM J. Math. Anal., 1987, 18(2): 332-336

[9]

Zhang P.. Remark on the regularities of Kato’s solutions to Navier-Stokes equations with initial data in L d(ℝd). Chin. Ann. Math., 2008, 29B(3): 265-272

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/