Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds
Mihai Păun
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6)
Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds
The author establishes a result concerning the regularity properties of the degenerate complex Monge-Ampére equations on compact Kähler manifolds.
Monge-Ampère operator / Estimates / Pluripotential theory
| [1] |
|
| [2] |
Cascini, P. and La Nave, G., Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties, preprint. arXiv: math.AG/0603064 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Demailly, J.-P. and Pali, N., Degenerate complex Monge-Ampère equations over compact Kähler manifolds, preprint. arXiv: 07105109V2 |
| [7] |
Eyssidieux, Ph., Guedj, V. and Zeriahi, A., Singular Kähler-Einstein metrics, J. Amer. Math. Soc., to appear. arXiv: math.AG/0603431 |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |