PDF
Abstract
The authors investigate the global behavior of the solutions of the difference equation $x_{n + 1} = \frac{{ax_{n - l} x_{n - k} }}{{bx_{n - p} + cx_{n - q} }}, n = 0, 1, \cdots ,$ where the initial conditions x −r, x −r+1, x−r+2, …, x 0 are arbitrary positive real numbers, r = max{l, k, p, q} is a nonnegative integer and a, b, c are positive constants. Some special cases of this equation are also studied in this paper.
Keywords
Stability
/
Periodic solutions
/
Difference equations
Cite this article
Download citation ▾
Elmetwally M. Elabbasy, Elsayed M. Elsayed.
Dynamics of a rational difference equation.
Chinese Annals of Mathematics, Series B, 2009, 30(2): DOI:10.1007/s11401-007-0456-9
| [1] |
Aloqeili M.. Dynamics of a rational difference equation. Appl. Math. Comp., 2006, 176(2): 768-774
|
| [2] |
Amleh A. M., Kirk V., Ladas G.. On the dynamics of $x_{n + 1} = \frac{{a + bx_{n - 1} }}{{A + Bx_{n - 2} }}$. Math. Sci. Res. Hot-Line, 2001, 5: 1-15
|
| [3] |
Berenhaut K., Foley J., Stevic S.. Quantitative bounds for the recursive sequence $y_{n + 1} = A\frac{{y_n }}{{y_{n - k} }}$. Appl. Math. Lett., 2006, 19: 983-989
|
| [4] |
Chen H., Wang H.. Global attractivity of the difference equation $x_{n + 1} = \frac{{x_n + \alpha x_{n - 1} }}{{\beta + x_n }}$. Appl. Math. Comp., 2006, 181: 1431-1438
|
| [5] |
Cinar C.. On the positive solutions of the difference equation $x_{n + 1} = \frac{{x_{n - 1} }}{{1 + x_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 150: 21-24
|
| [6] |
Cinar C.. On the difference equation $x_{n + 1} = \frac{{x_{n - 1} }}{{ - 1 + x_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 158: 813-816
|
| [7] |
Cinar C.. On the positive solutions of the difference equation $x_{n + 1} = \frac{{ax_{n - 1} }}{{1 + bx_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 156: 587-590
|
| [8] |
Elabbasy E. M., El-Metwally H., Elsayed E. M.. Global attractivity and periodic character of a fractional difference equation of order three. Yokohama Math. J., 2007, 53: 89-100
|
| [9] |
Elabbasy E. M., El-Metwally H., Elsayed E. M.. On the difference equation $x_{n + 1} = ax_n - \frac{{bx_n }}{{cx_n - dx_{n - 1} }}$. Adv. Diff. Eq., 2006, 2006: 1-10
|
| [10] |
Elabbasy E. M., El-Metwally H., Elsayed E. M.. On the difference equations $x_{n + 1} = \frac{{ax_{n - k} }}{{\beta + \gamma \prod\limits_{i = 0}^k {x_{n - i} } }}$. J. Conc. Appl. Math., 2007, 5(2): 101-113
|
| [11] |
El-Metwally H., Grove E. A., Ladas G.. A global convergence result with applications to periodic solutions. J. Math. Anal. Appl., 2000, 245: 161-170
|
| [12] |
El-Metwally H., Grove E. A., Ladas G. On the difference equation $y_{n + 1} = \frac{{y_{n - (2k + 1)} + p}}{{y_{n - (2k + 1)} + qy_{n - 2l} }}$. Proceedings of the 6th ICDE, 2004, London: Taylor and Francis
|
| [13] |
El-Metwally H., Grove E. A., Ladas G. On the global attractivity and the periodic character of some difference equations. J. Diff. Eqs. Appl., 2001, 7: 1-14
|
| [14] |
Kocic V. L., Ladas G.. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, 1993, Dordrecht: Kluwer Academic Publishers
|
| [15] |
Kulenovic M. R. S., Ladas G.. Dynamics of Second Order Rational Difference equations with Open Problems and Conjectures, 2001, Boca Raton, FL: Chapman and Hall/CRC Press
|
| [16] |
Li Z., Zhu D.. Global asymptotic stability of a higher order nonlinear difference equation. Appl. Math. Lett., 2006, 19: 926-930
|
| [17] |
Saleh M., Aloqeili M.. On the difference equation $x_{n + 1} = A + \frac{{x_n }}{{x_{n - k} }}$. Appl. Math. Comp., 2005, 171: 862-869
|
| [18] |
Saleh M., Abu-Baha S.. Dynamics of a higher order rational difference equation. Appl. Math. Comp., 2006, 181: 84-102
|
| [19] |
Sun T., Xi H.. On convergence of the solutions of the difference equation $x_{n + 1} = 1 + \frac{{x_{n - 1} }}{{x_n }}$. J. Math. Anal. Appl., 2007, 325: 1491-1494
|
| [20] |
Yang X., Su W., Chen B. On the recursive sequence $x_{n + 1} = \frac{{ax_{n - 1} + bx_{n - 2} }}{{c + dx_{n - 1} x_{n - 2} }}$. Appl. Math. Comp., 2005, 162: 1485-1497
|
| [21] |
Yang X., Yang Y., Luo J.. On the difference equation $x_n = \frac{{p + x_{n - s} }}{{qx_{n - t} + x_{n - s} }}$. Appl. Math. Comp., 2007, 189(1): 918-926
|