Dynamics of a rational difference equation

Elmetwally M. Elabbasy , Elsayed M. Elsayed

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2)

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) DOI: 10.1007/s11401-007-0456-9
Article

Dynamics of a rational difference equation

Author information +
History +
PDF

Abstract

The authors investigate the global behavior of the solutions of the difference equation $x_{n + 1} = \frac{{ax_{n - l} x_{n - k} }}{{bx_{n - p} + cx_{n - q} }}, n = 0, 1, \cdots ,$ where the initial conditions x r, x r+1, xr+2, …, x 0 are arbitrary positive real numbers, r = max{l, k, p, q} is a nonnegative integer and a, b, c are positive constants. Some special cases of this equation are also studied in this paper.

Keywords

Stability / Periodic solutions / Difference equations

Cite this article

Download citation ▾
Elmetwally M. Elabbasy, Elsayed M. Elsayed. Dynamics of a rational difference equation. Chinese Annals of Mathematics, Series B, 2009, 30(2): DOI:10.1007/s11401-007-0456-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aloqeili M.. Dynamics of a rational difference equation. Appl. Math. Comp., 2006, 176(2): 768-774

[2]

Amleh A. M., Kirk V., Ladas G.. On the dynamics of $x_{n + 1} = \frac{{a + bx_{n - 1} }}{{A + Bx_{n - 2} }}$. Math. Sci. Res. Hot-Line, 2001, 5: 1-15

[3]

Berenhaut K., Foley J., Stevic S.. Quantitative bounds for the recursive sequence $y_{n + 1} = A\frac{{y_n }}{{y_{n - k} }}$. Appl. Math. Lett., 2006, 19: 983-989

[4]

Chen H., Wang H.. Global attractivity of the difference equation $x_{n + 1} = \frac{{x_n + \alpha x_{n - 1} }}{{\beta + x_n }}$. Appl. Math. Comp., 2006, 181: 1431-1438

[5]

Cinar C.. On the positive solutions of the difference equation $x_{n + 1} = \frac{{x_{n - 1} }}{{1 + x_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 150: 21-24

[6]

Cinar C.. On the difference equation $x_{n + 1} = \frac{{x_{n - 1} }}{{ - 1 + x_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 158: 813-816

[7]

Cinar C.. On the positive solutions of the difference equation $x_{n + 1} = \frac{{ax_{n - 1} }}{{1 + bx_n x_{n - 1} }}$. Appl. Math. Comp., 2004, 156: 587-590

[8]

Elabbasy E. M., El-Metwally H., Elsayed E. M.. Global attractivity and periodic character of a fractional difference equation of order three. Yokohama Math. J., 2007, 53: 89-100

[9]

Elabbasy E. M., El-Metwally H., Elsayed E. M.. On the difference equation $x_{n + 1} = ax_n - \frac{{bx_n }}{{cx_n - dx_{n - 1} }}$. Adv. Diff. Eq., 2006, 2006: 1-10

[10]

Elabbasy E. M., El-Metwally H., Elsayed E. M.. On the difference equations $x_{n + 1} = \frac{{ax_{n - k} }}{{\beta + \gamma \prod\limits_{i = 0}^k {x_{n - i} } }}$. J. Conc. Appl. Math., 2007, 5(2): 101-113

[11]

El-Metwally H., Grove E. A., Ladas G.. A global convergence result with applications to periodic solutions. J. Math. Anal. Appl., 2000, 245: 161-170

[12]

El-Metwally H., Grove E. A., Ladas G. On the difference equation $y_{n + 1} = \frac{{y_{n - (2k + 1)} + p}}{{y_{n - (2k + 1)} + qy_{n - 2l} }}$. Proceedings of the 6th ICDE, 2004, London: Taylor and Francis

[13]

El-Metwally H., Grove E. A., Ladas G. On the global attractivity and the periodic character of some difference equations. J. Diff. Eqs. Appl., 2001, 7: 1-14

[14]

Kocic V. L., Ladas G.. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, 1993, Dordrecht: Kluwer Academic Publishers

[15]

Kulenovic M. R. S., Ladas G.. Dynamics of Second Order Rational Difference equations with Open Problems and Conjectures, 2001, Boca Raton, FL: Chapman and Hall/CRC Press

[16]

Li Z., Zhu D.. Global asymptotic stability of a higher order nonlinear difference equation. Appl. Math. Lett., 2006, 19: 926-930

[17]

Saleh M., Aloqeili M.. On the difference equation $x_{n + 1} = A + \frac{{x_n }}{{x_{n - k} }}$. Appl. Math. Comp., 2005, 171: 862-869

[18]

Saleh M., Abu-Baha S.. Dynamics of a higher order rational difference equation. Appl. Math. Comp., 2006, 181: 84-102

[19]

Sun T., Xi H.. On convergence of the solutions of the difference equation $x_{n + 1} = 1 + \frac{{x_{n - 1} }}{{x_n }}$. J. Math. Anal. Appl., 2007, 325: 1491-1494

[20]

Yang X., Su W., Chen B. On the recursive sequence $x_{n + 1} = \frac{{ax_{n - 1} + bx_{n - 2} }}{{c + dx_{n - 1} x_{n - 2} }}$. Appl. Math. Comp., 2005, 162: 1485-1497

[21]

Yang X., Yang Y., Luo J.. On the difference equation $x_n = \frac{{p + x_{n - s} }}{{qx_{n - t} + x_{n - s} }}$. Appl. Math. Comp., 2007, 189(1): 918-926

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/