On S-shaped bifurcation curves for a class of perturbed semilinear equations

Benlong Xu , Zhongliang Wang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 641 -662.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 641 -662. DOI: 10.1007/s11401-007-0379-5
Article

On S-shaped bifurcation curves for a class of perturbed semilinear equations

Author information +
History +
PDF

Abstract

By making use of bifurcation analysis and continuation method, the authors discuss the exact number of positive solutions for a class of perturbed equations. The nonlinearities concerned are the so-called convex-concave functions and their behaviors may be asymptotic sublinear or asymptotic linear. Moreover, precise global bifurcation diagrams are obtained.

Keywords

Semilinear elliptic equations / Exact multiplicity of solutions / S-Shaped bifurcation curve

Cite this article

Download citation ▾
Benlong Xu, Zhongliang Wang. On S-shaped bifurcation curves for a class of perturbed semilinear equations. Chinese Annals of Mathematics, Series B, 2008, 29(6): 641-662 DOI:10.1007/s11401-007-0379-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amann H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach space. SIAM Rev., 1976, 18: 620-709

[2]

Bebernes J., Eberly D.. Mathematical Problems from Combustion Theory, 1989, Berlin/New York: Springer-Verlag

[3]

Brown K. J., Ibrahim M. M., Shivaji R.. S-Shaped bifurcation curves. Nonlinear Anal., 1981, 5: 475-486

[4]

Castro A., Gadam S., Shivaji R.. Branches of radial solutions for semipositone problems. J. Diff. Eqs., 1995, 120: 30-45

[5]

Crandall M. G., Rabinowitz P. H.. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal., 1973, 52: 161-180

[6]

Dancer E. N.. On the structure of solutions of an equation in catalysis theory when a parameter is large. J. Diff. Eqs., 1980, 37: 404-437

[7]

Deimling K.. Nonlinear Functional Analysis, 1985, Berlin/New York: Springer-Verlag

[8]

Du Y.. Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory. SIAM J. Math. Anal., 2000, 32: 707-733

[9]

Du Y., Lou Y.. Proof of a conjecture for the perturbed Gelfand equation from combustion theory. J. Diff. Eqs., 2001, 173: 213-230

[10]

Gidas B., Ni W.-M., Nirenberg L.. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 1979, 68: 209-243

[11]

Korman P.. Solution curves for semilinear equations on a ball. Proc. Amer. Math. Soc., 1999, 125: 1997-2005

[12]

Korman P., Li Y.. On the exactness of an S-shaped bifurcation curve. Proc. Amer. Math. Soc., 1999, 127: 1011-1020

[13]

Korman P., Li Y., Ouyang T.. Exact multiplicity results for boundary value problems with nonlinearities generalising cubic. Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126: 599-616

[14]

Korman P., Li Y., Ouyang T.. An exact muliplicity result for a class of semilinear equations. Comm. Partial Diff. Eqs., 1997, 22: 661-684

[15]

Li Y. Y., Nirenberg L.. Geometric Problem and the Hopt Lemma II. Chin. Ann. Math., 2006, 27B(2): 193-218

[16]

Lin C.-S., Ni W.-M.. A conterexample to the nodal domain conjecture and related semilinear equation. Proc. Amer. Math. Soc., 1998, 102: 271-277

[17]

Lions P. L.. On the existence of positive solutions of semilinear elliptic equations. SIAM Rev., 1982, 24: 441-467

[18]

Ouyang T., Shi J.. Exact multiplicity of positive solutions for a class of semilinear problem. J. Diff. Eqs., 1998, 146: 121-156

[19]

Ouyang T., Shi J.. Exact multiplicity of positive solutions for a class of semilinear problem, II. J. Diff. Eqs., 1999, 158: 94-151

[20]

Rabinowitz P. H.. Some global results for nonlinear eigenvalue problems. J. Funct. Anal., 1971, 7: 487-513

[21]

Wei J.. Exact multiplicity for some nonlinear elliptic equations in balls. Proc. Amer. Math. Soc., 1997, 125: 3235-3242

[22]

Wang S.. On S-shaped bifurcation curves. Nonlinear Anal., 1994, 22: 1475-1485

[23]

Wang S.. Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws. Proc. Roy. Soc. London Sect. A, 1998, 454: 1031-1048

[24]

Zhao Y., Wang Y., Shi J.. Exact multiplicity of S-shaped bifurcation curve for a class of semi-linear elliptic equations from a chemical reaction model. J. Math. Anal. Appl., 2007, 331: 263-278

[25]

Xu B.. Exact multiplicity and global structure of solutions for a class of semilinear elliptic equations. J. Math. Anal. Appl., 2008, 341: 783-790

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/