Multivalued stochastic differential equations with non-Lipschitz coefficients

Siyan Xu

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 321 -332.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 321 -332. DOI: 10.1007/s11401-007-0360-3
Article

Multivalued stochastic differential equations with non-Lipschitz coefficients

Author information +
History +
PDF

Abstract

The existence and uniqueness of solutions to the multivalued stochastic differential equations with non-Lipschitz coefficients are proved, and bicontinuous modifications of the solutions are obtained.

Keywords

Multivalued stochastic differential equation / Maximal monotone operator / Non-Lipschitz / Bicontinuity

Cite this article

Download citation ▾
Siyan Xu. Multivalued stochastic differential equations with non-Lipschitz coefficients. Chinese Annals of Mathematics, Series B, 2009, 30(3): 321-332 DOI:10.1007/s11401-007-0360-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin J. P., Cellina A.. Differential Inclusions, 1984, Berlin: Springer-Verlag

[2]

Brezis H.. Opérateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert, 1973, Amsterdam: North-Holland

[3]

Cépa E.. Équations différentielles stochastiques multivoques. Sémin. Probab., 1995, 29: 86-107

[4]

Lamarque C.-H., Bernardin F., Bastien J.. Study of a rheological model with a friction term and a cubic team: deterministic and stochastic cases. Eur. J. Mech. A Solids, 2004, 24(4): 572-592

[5]

Le Gall J. F.. Applications du temps local aux équations différentielles stochastiques unidimensionnelles. Sémin. Probab., 1983, 17: 15-31

[6]

Lépingle D., Marois C.. Equations diffrentielles stochastiques multivoques unidimensionnelles. Sémin. Probab., 1987, 21: 520-533

[7]

Ren J. G., Zhang X. C.. Stochastic flows for SDEs with non-Lipschitz coefficients. Bull. Sci. Math., 2003, 127(8): 739-754

[8]

Yamada T., Ogura Y.. On the strong comparison theorems for stochastic differential equations. Z. Wahrsch. Verw. Gebiete, 1981, 56: 3-19

[9]

Revuz D., Yor M.. Continuous Martingales and Brownian Motion, 1991, Berlin: Springer-Verlag

[10]

Zhang X., Zhu J.. Non-Lipschitz stochastic differential equations driven by multi-parameter Brownian motions. Stoch. Dyn., 2006, 6(3): 329-340

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/