Topological representations of distributive hypercontinuous lattices

Xiaoquan Xu , Jinbo Yang

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 199 -206.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 199 -206. DOI: 10.1007/s11401-007-0316-7
Article

Topological representations of distributive hypercontinuous lattices

Author information +
History +
PDF

Abstract

The concept of locally strong compactness on domains is generalized to general topological spaces. It is proved that for each distributive hypercontinuous lattice L, the space SpecL of nonunit prime elements endowed with the hull-kernel topology is locally strongly compact, and for each locally strongly compact space X, the complete lattice of all open sets $\mathcal{O}$(X) is distributive hypercontinuous. For the case of distributive hyperalgebraic lattices, the similar result is given. For a sober space X, it is shown that there is an order reversing isomorphism between the set of upper-open filters of the lattice $\mathcal{O}$(X) of open subsets of X and the set of strongly compact saturated subsets of X, which is analogous to the well-known Hofmann-Mislove Theorem.

Keywords

Hypercontinuous lattice / Locally strongly compact space / Hull-kernel topology / Hyperalgebraic lattice / Strongly locally compact space

Cite this article

Download citation ▾
Xiaoquan Xu, Jinbo Yang. Topological representations of distributive hypercontinuous lattices. Chinese Annals of Mathematics, Series B, 2009, 30(2): 199-206 DOI:10.1007/s11401-007-0316-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gierz G., Hofmann K. H., Keimel K. Continuous Lattices and Domains, 2003, Cambridge: Cambridge University Press

[2]

Gierz G., Lawson J. D., Stralka A.. Quasicontinuous posets. Houston J. Math., 1983, 9: 191-208

[3]

Heckmann, R., Power Domain Construction, Ph. D. Thesis, Universität des Saarlandes, 1990.

[4]

Hofmann K. H., Lawson J. D.. The spectral theory of distributive lattices. Trans. Amer. Math. Soc., 1978, 246: 285-310

[5]

Keimel K., Paseka J.. A direct proof of the Hofmann-Mislove theorem. Pro. Amer. Math. Soc., 1994, 120: 301-303

[6]

Johnstone P. T.. Stone Spaces, 1982, Cambridge: Cambridge University Press

[7]

Rudin, M. E., Directed sets with converge, Proc. Riverside Symposium on Topology and Modern Analysis, Riverside, CA, 1980, 305–307.

[8]

Stone M. H.. The theory of representation for Boolean algebras. Trans. Amer. Math. Soc., 1936, 40: 37-111

[9]

Xu X. Q., Liu Y. M.. Relational representations of hypercontinuous lattices, Domain Theory, Logic and Computation, 2003, Dortrecht/Boston/London: Kluwer Academic Publishers 65-74

[10]

Xu X. Q., Liu Y. M.. The Scott topology and Lawson topology on a Z-quasi-continuous domain (in Chinese). Chin. Ann. Math., 2003, 24A(3): 365-376

[11]

Yang J. B., Luo M. K.. Priestley spaces, quasi-hyperalgebraic lattices and Smyth powerdomains. Acta Math. Sin., English Ser., 2006, 22(3): 951-958

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/