A Cheeger-Müller theorem for symmetric bilinear torsions

Guangxiang Su , Weiping Zhang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (4)

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (4) DOI: 10.1007/s11401-007-0307-8
Article

A Cheeger-Müller theorem for symmetric bilinear torsions

Author information +
History +
PDF

Abstract

The authors establish a Cheeger-Müller type theorem for the complex valued analytic torsion introduced by Burghelea and Haller for flat vector bundles carrying nondegenerate symmetric bilinear forms. As a consequence, they prove the Burghelea-Haller conjecture in full generality, which gives an analytic interpretation of (the square of) the Turaev torsion.

Keywords

Analytic torsion / Symmetric bilinear form / Cheeger-Müller theorem / Bismut-Zhang theorem

Cite this article

Download citation ▾
Guangxiang Su, Weiping Zhang. A Cheeger-Müller theorem for symmetric bilinear torsions. Chinese Annals of Mathematics, Series B, 2008, 29(4): DOI:10.1007/s11401-007-0307-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atiyah M. F., Bott R., Patodi V. K.. On the heat equation and the index theorem. Invent. Math., 1973, 19: 279-330

[2]

Bismut J.-M., Gillet H., Soulé C.. Analytic torsions and holomorphic determinant line bundles I. Commun. Math. Phys., 1988, 115: 49-78

[3]

Bismut J.-M., Lebeau G.. Complex immersions and Quillen metrics. Publ. Math. IHES., 1991, 74: 1-297

[4]

Bismut J.-M., Zhang W.. An Extension of a Theorem by Cheeger and Müller. Astérisque, 1992, Paris: Soc. Math. France

[5]

Bismut J.-M., Zhang W.. Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle. Geom. Funct. Anal., 1994, 4: 136-212

[6]

Braverman M., Kappeler T.. A refinement of the Ray-Singer torsion. C. R. Acad. Sci. Paris, 2005, 341: 497-502

[7]

Braverman M., Kappeler T.. Refined analytic torsion as an element of the determinant line. Geom. and Topol., 2007, 11: 139-213

[8]

Braverman M., Kappeler T.. Ray-Singer type theorem for the refined analytic torsion. J. Funct. Anal., 2007, 243: 232-256

[9]

Braverman M., Kappeler T.. Comparison of the refined analytic and the Burghelea-Haller torsions. Ann. Inst. Fourier., 2007, 57: 2361-2387

[10]

Burghelea D., Haller S.. Burghelea D., Melrose R., Mishchenko A. S.. Torsion, as function on the space of representations. C *-algebras and Elliptic Theory II (Trends in Mathematics), 2008, Basel: Birkhäuser 41-66

[11]

Burghelea D., Haller S.. Complex valued Ray-Singer torsion. J. Funct. Anal., 2007, 248: 27-78

[12]

Burghelea, D. and Haller, S., Complex valued Ray-Singer torsion II, preprint. math.DG/0610875

[13]

Cheeger J.. Analytic torsion and the heat equation. Ann. of Math., 1979, 109: 259-332

[14]

Chern S., Hu X.. Equivariant Chern character for the invariant Dirac operator. Michigan Math. J., 1997, 44: 451-473

[15]

Farber M., Turaev V.. Poincaré-Reidemeister metric, Euler structures and torsion. J. Reine Angew. Math., 2000, 520: 195-225

[16]

Feng H.. A remark on the noncommutative Chern character (in Chinese). Acta Math. Sinica, 2003, 46: 57-64

[17]

Getzler E.. Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem. Commun. Math. Phys., 1983, 92: 163-178

[18]

Getzler E.. A short proof the local Atiyah-Singer index theorem. Topology, 1986, 25: 111-117

[19]

Helffer B., Sjöstrand J.. Puis multiples en mécanique semi-classique IV: Etude du complexe de Witten. Comm. PDE, 1985, 10: 245-340

[20]

Knudson F. F., Mumford D.. The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div”. Math. Scand., 1976, 39: 19-55

[21]

Laudenbach, F., On the Thom-Smale complex, Appendix in “An Extension of a Theorem by Cheeger and Müller”, J.-M. Bismut and W. Zhang (eds.), Astérisque, 205, Paris, 1992.

[22]

Mathai V., Quillen D.. Superconnections, Thom classes, and equivariant differential forms. Topology, 1986, 25: 85-110

[23]

Milnor J.. Whitehead torsion. Bull. Amer. Math. Soc., 1966, 72: 358-426

[24]

Müller W.. Analytic torsion and the R-torsion of Riemannian manifolds. Adv. in Math., 1978, 28: 233-305

[25]

Müller W.. Analytic torsion and the R-torsion for unimodular representations. J. Amer. Math. Soc., 1993, 6: 721-753

[26]

Quillen D.. Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl., 1985, 14: 31-34

[27]

Quillen D.. Superconnections and the Chern character. Topology, 1985, 24: 89-95

[28]

Ray D. B., Singer I. M.. R-torsion and the Laplacian on Riemannian manifolds. Adv. in Math., 1971, 7: 145-210

[29]

Shubin M. A.. Semiclassical asymptotics on covering manifolds and Morse inequalities. Geom. Funct. Anals., 1996, 6: 370-409

[30]

Shubin M. A.. Pseudodifferential Operators and Spectral Theory, 2001, Berlin: Springer-Verlag

[31]

Simon B.. Trace Ideals and Their Applications. London Math. Soc., 1979, Cambridge: Cambridge University Press

[32]

Smale S.. On gradient dynamical systems. Ann. of Math., 1961, 74: 199-206

[33]

Su, G. and Zhang, W., A Cheeger-Müller theorem for symmetric bilinear torsions, preprint. math. DG/0610577

[34]

Turaev V.. Euler structures, nonsingular vector fields, and Reidemeister-type torsion. Math. USSR-Izv., 1990, 34: 627-662

[35]

Witten E.. Supersymmetry and Morse theory. J. Diff. Geom., 1982, 17: 661-692

[36]

Zhang W.. Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, 2001, Singapore: World Scientific

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/