The Kähler-Ricci flow on Kähler manifolds with 2-non-negative traceless bisectional curvature operator

Xiuxiong Chen , Haozhao Li

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 543 -556.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 543 -556. DOI: 10.1007/s11401-007-0294-9
Article

The Kähler-Ricci flow on Kähler manifolds with 2-non-negative traceless bisectional curvature operator

Author information +
History +
PDF

Abstract

The authors show that the 2-non-negative traceless bisectional curvature is preserved along the Kähler-Ricci flow. The positivity of Ricci curvature is also preserved along the Kähler-Ricci flow with 2-non-negative traceless bisectional curvature. As a corollary, the Kähler-Ricci flow with 2-non-negative traceless bisectional curvature will converge to a Kähler-Ricci soliton in the sense of Cheeger-Gromov-Hausdorff topology if complex dimension n ≥ 3.

Keywords

Kähler-Ricci flow / 2-Non-negative bisectional curvature

Cite this article

Download citation ▾
Xiuxiong Chen, Haozhao Li. The Kähler-Ricci flow on Kähler manifolds with 2-non-negative traceless bisectional curvature operator. Chinese Annals of Mathematics, Series B, 2008, 29(5): 543-556 DOI:10.1007/s11401-007-0294-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bando S.. On the three dimensional compact Kähler manifolds of nonnegative bisectional curvature. J. Diff. Geom, 1984, 19: 283-297

[2]

Cao H. D.. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math., 1985, 81: 359-372

[3]

Chow B., Lu P.. The maximum principle for systems of parabolic equations subject to an avoidance set. Pacific J. Math., 2004, 214(2): 201-222

[4]

Cao H. D., Chen B. L., Zhu X. P.. Ricci flow on Kähler manifold of positive bisectional curvature. C. R. Math. Acad. Sci. Paris, 2003, 337: 781-784

[5]

Chen H.. Pointwise 1/4-pinched 4-manifolds. Ann. Global Anal. Geom., 1991, 9(2): 161-176

[6]

Chen X. X.. On Kähler manifold with positive orthogonal bisectional curvature. Adv. Math., 2007, 215(2): 427-445

[7]

Chen X. X., Tian G.. Ricci flow on Kähler-Einstein surfaces. Invent. Math., 2002, 147(3): 487-544

[8]

Chen X. X., Tian G.. Ricci flow on Kähler-Einstein manifolds. Duke. Math. J., 2006, 131(1): 17-73

[9]

Knopf D.. Positivity of Ricci curvature under the Kähler-Ricci flow. Commun. Contemp. Math., 2006, 8(1): 123-133

[10]

Hamilton R.. Three-manifolds with positive Ricci curvature. J. Diff. Geom., 1982, 17: 255-306

[11]

Hamilton R.. Four manifolds with positive curvature operator. J. Diff. Geom., 1986, 24: 153-179

[12]

Hamilton R.. The formation of singularities in the Ricci flow. Surv. in Diff. Geom., 1995, 2: 7-136

[13]

Hamilton R.. Four-manifolds with positive isotropic curvature. Comm. Anal. Geom., 1997, 5(1): 1-92

[14]

Ni L.. Ricci flow and nonnegativity of curvature. Math. Res. Lett., 2004, 11: 883-904

[15]

Mok N.. The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Diff. Geom., 1988, 27: 179-214

[16]

Perelman, G., The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

[17]

Perelman, G., Kähler-Ricci flow, unpublished work.

[18]

Petersen P.. Riemannian Geometry, Graduate Texts in Mathematics, 1997, New York/Berling/Heidelberg: Springer-Verlag

[19]

Phong D. H., Sturm J.. On the Kähler-Ricci flow on complex surfaces. Pure Appl. Math. Quar., 2005, 1(2): 405-413

[20]

Phong D. H., Sturm J.. On stability and the convergence of the Kähler-Ricci flow. J. Diff. Geom., 2006, 72: 149-168

[21]

Sesum, N., Limiting behaviour of the Ricci flow. arXiv:math.DG/0402194

[22]

Sesum N.. Convergence of a Kähler-Ricci flow. Math. Res. Lett., 2005, 12: 623-632

[23]

Yau S. T.. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math., 1978, 31: 339-441

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/