Jump type Cahn-Hilliard equations with fractional noises

Lijun Bo , Kehua Shi , Yongjin Wang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 663 -678.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 663 -678. DOI: 10.1007/s11401-007-0293-x
Article

Jump type Cahn-Hilliard equations with fractional noises

Author information +
History +
PDF

Abstract

The authors explore a class of jump type Cahn-Hilliard equations with fractional noises. The jump component is described by a (pure jump) Lévy space-time white noise. A fixed point scheme is used to investigate the existence of a unique local mild solution under some appropriate assumptions on coefficients.

Keywords

Cahn-Hilliard equations / Fractional noises / Lévy space-time white noise / Local mild solution

Cite this article

Download citation ▾
Lijun Bo, Kehua Shi, Yongjin Wang. Jump type Cahn-Hilliard equations with fractional noises. Chinese Annals of Mathematics, Series B, 2008, 29(6): 663-678 DOI:10.1007/s11401-007-0293-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio J., Wu J., Zhang T.. Parabolic SPDEs driven by Poisson white noise. Stoch. Proc. Appl., 1998, 74: 21-36

[2]

Bo L., Jiang Y., Wang Y.. On a class of stochastic Anderson models with fractional noises. Stoch. Anal. Appl., 2008, 26: 256-273

[3]

Bo L., Shi K., Wang Y.. On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps. Stoch. Dyn., 2007, 7: 439-457

[4]

Bo L., Wang Y.. Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime white noises. Stoch. Dyn., 2006, 6(2): 229-244

[5]

Cardon-Weber C.. Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 2001, 7(5): 777-816

[6]

Cardon-Weber C., Millet A.. On strongly Petrovskiî’s parabolic SPDEs in arbitrary dimension and application to the stochastic Cahn-Hilliard equation. J. Th. Prob., 2001, 17(1): 1-49

[7]

Cahn J., Hilliard J.. Free energy for a nonuniform system I, Interfacial free energy. J. Chem. Phys., 1958, 2: 258-267

[8]

Da Prato G., Debussche A.. Stochastic Cahn-Hilliard equation. Nonlinear Anal. Th. Meth. Appl., 1996, 26(2): 241-263

[9]

Duncan E., Maslowski B., Pasik-Duncan B.. Fractional Brownian motion and stochastic equations in Hilbert space. Stoch. Dyn., 2002, 2: 225-250

[10]

Hausenblas E.. Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure. Electron. J. Prob., 2005, 10(46): 1496-1546

[11]

Hu Y.. Heat equation with fractional white noise potentials. Appl. Math. Optim., 2001, 43: 221-243

[12]

Knoche C.. SPDEs in infinite dimension with Poisson noise. C. R. Math. Acad. Sci. Paris, 2004, 339(9): 647-652

[13]

Knoche C.. Mild solutions of SPDEs driven by Poisson noise in infinite dimensions and their dependence on initial conditions, 2005, Bielefeld: Fakultät für Mathematik, Universität Bielefeld

[14]

Maslowski B., Nualart D.. Evolution equations driven by a fractional Brownian motion. J. Funct. Anal., 2003, 202: 277-305

[15]

Mémin J., Mishura Y., Valkeila E.. Inequality for the moments of Wiener integrals with respect to a fractional Brownain. Stat. Prob. Lett., 2001, 51: 197-206

[16]

Novick-Cohen A., Segel L.. Nonlinear aspects of the Cahn-Hilliard eqaution. Phy. D., 1984, 10: 277-298

[17]

Nualart D., Ouknine Y.. Regularization of quasilinear heat equations by a fractional noise. Stoch. Dyn., 2004, 4(2): 201-221

[18]

Nualart D., Rascanu A.. Differential equations driven by fractional Brownian motion. Collectanea Math., 2002, 53: 55-81

[19]

Protter P.. Stochastic Integration and Differential Equations, 1990, Berlin: Springer

[20]

Shiga T.. Two contrasting properties of solutions for one-dimension stochastic partial differential equations. Can. J. Math., 1994, 46: 415-437

[21]

Tindel S., Tudor A., Viens E.. Stochastic evolution equations with fractional Brownian motion. Prob. Th. Relat. Fields, 2003, 127: 186-204

[22]

Truman A., Wu J. Davies I. M. Stochastic Burgers equation with Lévy space-time white noise. Probabilistic Methods in Fluids, 2003, River Edge, NJ: World Sci. Publ. 298-323

[23]

Walsh J.. An Introduction to Stochastic Partial Differential Equations, 1986, Berlin: Springer 265-439

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/