Holomorphic Lefschetz fixed point formula for non-compact Kähler manifolds

Boyong Chen , Yang Liu

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6)

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) DOI: 10.1007/s11401-007-0256-2
Article

Holomorphic Lefschetz fixed point formula for non-compact Kähler manifolds

Author information +
History +
PDF

Abstract

The authors obtain a holomorphic Lefschetz fixed point formula for certain non-compact “hyperbolic” Kähler manifolds (e.g. Kähler hyperbolic manifolds, bounded domains of holomorphy) by using the Bergman kernel. This result generalizes the early work of Donnelly and Fefferman.

Keywords

Lefschetz fixed point formula / Bergman kernel

Cite this article

Download citation ▾
Boyong Chen, Yang Liu. Holomorphic Lefschetz fixed point formula for non-compact Kähler manifolds. Chinese Annals of Mathematics, Series B, 2008, 29(6): DOI:10.1007/s11401-007-0256-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen B. Y.. Infinite dimensionality of the middle L 2-cohomology on non-compact Kähler hyperbolic manifolds. Publ. RIMS., 2006, 42: 683-689

[2]

Donnelly H., Fefferman C.. Fixed point formula for the Bergman kernel. Amer. J. Math., 1986, 108: 1241-1257

[3]

Donnelly H., Fefferman C.. L 2 cohomology and index theorem for the Bergman metric. Ann. Math., 1983, 118: 593-618

[4]

Fefferman C.. The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math., 1974, 26: 1-65

[5]

Gromov M.. Kähler hyperbolicity and L 2-Hodge theory. J. Diff. Geom., 1991, 33: 263-292

[6]

Hörmander L.. L 2 estimates and existence theorems for the $\bar \partial $ operator. Acta Math., 1965, 113: 89-152

[7]

Kerzman N.. The Bergman kernel function. Differentiability at the boundary. Math. Ann., 1972, 195: 149-158

[8]

Lefschetz S.. Intersections and transformations of complexes and manifolds. Trans. Amer. Math. Soc., 1926, 28: 1-49

[9]

McNeal J. D.. L 2 harmonic forms on some complete Kähler manifolds. Math. Ann., 2002, 323: 319-349

[10]

Oeljeklaus K., Pflug P., Youssfi E. H.. The Bergman kernel of the minimal ball and applications. Ann. Inst. Fourier., 1997, 47: 915-928

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/