Almost global strong solutions to quasilinear dissipative evolution equations

Albert Milani

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1) : 91 -110.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1) : 91 -110. DOI: 10.1007/s11401-007-0251-7
Article

Almost global strong solutions to quasilinear dissipative evolution equations

Author information +
History +
PDF

Abstract

The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hyperbolicity parameter ε is sufficiently small. This implies a corresponding global existence result for the reduced quasilinear parabolic equation (1.4) below.

Keywords

Quasilinear evolution equation / A priori estimates / Global existence / Small parameter

Cite this article

Download citation ▾
Albert Milani. Almost global strong solutions to quasilinear dissipative evolution equations. Chinese Annals of Mathematics, Series B, 2009, 30(1): 91-110 DOI:10.1007/s11401-007-0251-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R., Fournier J.. Sobolev Spaces, 2003 Second Edition New York: Academic Press

[2]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 1983 Second Edition Berlin: Springer Verlag

[3]

Kato T.. Abstract Differential Equations and Nonlinear Mixed Problems, 1985, Pisa: Fermian Lectures

[4]

Krylov N. V.. Lectures on Elliptic and Parabolic Equations in Hölder Spaces. GSM Series, Vol. 12, 1996, Providence, RI: A. M. S.

[5]

Ladyzenskaya O. A., Solonnikov V. A., Ural’tzeva N. N.. Linear and Quasi-linear Equations of Parabolic Type. Transl. Math. Monographs, Vol. 23, 1968, Providence, RI: A. M. S.

[6]

Lions J. L., Magenes E.. Non-homogeneous Boundary Value Problems, Vol. I, 1972, New York: Springer Verlag

[7]

Matsumura A.. Global existence and asymptotics of the solutions of second order quasi-linear hyperbolic equations with first order dissipation term. Publ. RIMS Kyoto Univ., 1977, 13: 349-379

[8]

Milani A., Shibata Y.. On the strong well-posedness of quasilinear hyperbolic initial-boundary value problems. Funk. Ekv., 1995, 38(3): 491-503

[9]

Milani A.. Global existence via singular perturbations for quasilinear evolution equations. Adv. Math. Sci. Appl., 1996, 6(2): 419-444

[10]

Milani A.. Global existence via singular perturbations for quasilinear evolution equations: the initial-boundary value problem. Adv. Math. Sci. Appl., 2000, 10(2): 735-756

[11]

Milani A.. Sobolev regularity for t > 0 in quasilinear parabolic equations. Math. Nach., 2001, 231: 113-127

[12]

Moser J.. A rapidly convergent iteration method and nonlinear differential equations. Ann. Sc. Norm. Sup. Pisa, 1966, 20: 265-315

[13]

Racke R.. Lectures on Nonlinear Evolution Equations, 1992, Braunschweig: Vieweg

[14]

Taylor M. E.. Pseudodifferential Operators and Nonlinear PDE, 1991, Boston: Birkhäuser

[15]

Yang H., Milani A.. On the diffusion phenomenon of quasilinear hyperbolic waves. Bull. Sci. Math., 2000, 124(5): 415-433

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/