A remark on Chen’s theorem (II)

Yingchun Cai

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6)

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) DOI: 10.1007/s11401-007-0234-8
Article

A remark on Chen’s theorem (II)

Author information +
History +
PDF

Abstract

Let p denote a prime and P 2 denote an almost prime with at most two prime factors. The author proves that for sufficiently large x, where the constant 1.13 constitutes an improvement of the previous result 1.104 due to J. Wu.

Keywords

Chen’s theorem / Sieve / Mean value theorem

Cite this article

Download citation ▾
Yingchun Cai. A remark on Chen’s theorem (II). Chinese Annals of Mathematics, Series B, 2008, 29(6): DOI:10.1007/s11401-007-0234-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai Y. C.. A remark on Chen’s theorem. Acta Arith., 2002, 102(4): 339-352

[2]

Chen J. R.. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sin., 1973, 16: 157-176

[3]

Chen J. R.. On the representation of a large even integer as the sum of a prime and the product of at most two primes (II). Sci. Sin., 1978, 21: 421-430

[4]

Chen J. R.. On the representation of a large even integer as the sum of a prime and the product of at most two primes (II) (in Chinese). Sci. Sin., 1978, 21: 477-494

[5]

Fouvry E., Grupp F.. On the switching principle in sieve theory. J. Reine Angew. Math., 1986, 370: 101-126

[6]

Fouvry E., Grupp F.. Weighted sieves and twin prime type equations. Duke Math. J., 1989, 58: 731-748

[7]

Halberstam H.. A proof of Chen’s theorem. Asterisque, 1975, 24–25: 281-293

[8]

Halberstam H., Richert H. E.. Sieve Methods, 1974, London: Academic Press

[9]

Hardy G. H., Littlewood J. E.. Some problems of ‘partitio numerorum’, III: On the expression of a number as a sum of primes. Acta Math., 1923, 44: 1-70

[10]

Iwaniec H.. A new form of the error term in the linear sieve. Acta Arith., 1980, 114(3): 307-320

[11]

Jia C. H.. Almost all short intervals containing prime numbers. Acta Arith., 1996, 76(1): 21-84

[12]

Liu H. Q.. On prime twins problem. Sci. Sin., 1989, 10: 1030-1045

[13]

Pan C. D., Pan C. B.. Goldbach Conjecture (in Chinese), 1981, Beijing: Science Press

[14]

Wu J.. Sur la suite des nombres premiers jumeaux. Acta Arith., 1990, 55: 365-394

[15]

Wu J.. Chen’s double sieve, Goldbach’s conjecture and the twin prime problem. Acta Arith., 2004, 114(3): 215-273

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/