Coincidence Properties for Maps from the Torus to the Klein Bottle

Daciberg L. Gonçalves , Michael R. Kelly

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (4) : 425 -440.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (4) : 425 -440. DOI: 10.1007/s11401-007-0099-x
Article

Coincidence Properties for Maps from the Torus to the Klein Bottle

Author information +
History +
PDF

Abstract

The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it is shown that any given pair of maps satisfies the Wecken property. The 1-parameter Wecken property is studied and a partial negative answer is derived. That is for all pairs of coincidence free maps a countable family of pairs of maps in the homotopy class is constructed such that no two members may be joined by a coincidence free homotopy.

Keywords

Coincidence point / Nielsen number / Wecken property

Cite this article

Download citation ▾
Daciberg L. Gonçalves, Michael R. Kelly. Coincidence Properties for Maps from the Torus to the Klein Bottle. Chinese Annals of Mathematics, Series B, 2008, 29(4): 425-440 DOI:10.1007/s11401-007-0099-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bogatyi S., Gonçalves D. L., Zieschang H.. The minimal number of roots of surface mappings and quadratic equations on free groups. Math. Z., 2001, 236: 419-452

[2]

Bogatyi S., Kudryavtseva E. A., Zieschang H.. On coincidence points of mappings of a torus to a surface. Transl. Steklov Inst. Math., 2004, 247(4): 9-27

[3]

Brooks R. B. S., Odenthal C.. Nielsen numbers for roots of maps of aspherical manifolds. Pacific J. Math., 1995, 170: 405-420

[4]

Dimovski D., Geoghegan R.. One-parameter fixed point theory. Forum Math., 1990, 2: 125-154

[5]

Dobrenko R., Jezierski J.. The coincidence Nielsen number on nonorientable manifolds. Rocky Mountain J. Math., 1993, 23: 67-87

[6]

Geoghegan R., Nicas A.. Lefschetz-Nielsen fixed point theory and Hochschild homology traces. Amer. J. of Math., 1994, 116(2): 397-446

[7]

Gonçalves D. L., Kelly M. R.. Maps into surfaces and minimal coincidence sets for homotopies. Topo. and its Appl., 2001, 116(1): 91-102

[8]

Gonçalves D. L., Kelly M. R.. Maps into the torus and minimal coincidence sets for homotopies. Fund. Math., 2002, 172(2): 99-106

[9]

Gonçalves D. L., Kelly M. R.. Wecken type problems for self-maps of the Klein bottle. Fixed Point Theory and Appl., 2006, 2006: 1-15

[10]

Jezierski J.. One codimensional Wecken type theorems. Forum Math., 1993, 5: 421-439

[11]

Kelly M. R.. Some examples concerning homotopies of fixed point free maps. Topol. Appl., 1990, 37: 293-297

[12]

Kneser H.. Die kleinste Bedeckungszahl innerhalb einer Klasse von Fläachen abbildungen. Math. Ann., 1930, 103: 347-358

[13]

Olum P.. Mappings of manifolds and the notion of degree. Ann. of Math., 1953, 58: 458-480

[14]

Schirmer H.. Fixed point sets of homotopies. Pacific J. Math., 1983, 108(1): 191-202

[15]

Wong P.. Coincidence of maps into homogeneous spaces. Manuscripta Math., 1999, 98: 243-254

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/