Remark on the regularities of Kato’s solutions to Navier-Stokes equations with initial data in L d(ℝ d)

Ping Zhang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (3) : 265 -272.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (3) : 265 -272. DOI: 10.1007/s11401-007-0083-5
Article

Remark on the regularities of Kato’s solutions to Navier-Stokes equations with initial data in L d(ℝ d)

Author information +
History +
PDF

Abstract

Motivated by the results of J. Y. Chemin in “J. Anal. Math., 77, 1999, 27–50” and G. Furioli et al in “Revista Mat. Iberoamer., 16, 2002, 605–667”, the author considers further regularities of the mild solutions to Navier-Stokes equation with initial data u 0L d(ℝ d). In particular, it is proved that of uC([0, T*); L d(ℝ d)) is a mild solution of (N S v), then $u(t,x) - e^{\nu t\Delta } u_0 \in \tilde L^\infty ((0,T);\dot B_{\frac{d}{2},\infty }^1 ) \cap \tilde L^1 ((0,T);\dot B_{\frac{d}{2},\infty }^3 )$ for any T < T*.

Keywords

Navier-Stokes equations / Kato’s solutions / Para-differential decomposition

Cite this article

Download citation ▾
Ping Zhang. Remark on the regularities of Kato’s solutions to Navier-Stokes equations with initial data in L d(ℝ d). Chinese Annals of Mathematics, Series B, 2008, 29(3): 265-272 DOI:10.1007/s11401-007-0083-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bony J. M.. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. de l’École Norm. Sup., 1981, 14: 209-246

[2]

Cannone, M., Meyer, Y. and Planchon, F., Solutions autosimilaires des équations de Navier-Stokes, Séminaire, Équations aux Dérivées Partielles de l’École Polytechnique, Exposé VIII, 1993–1994.

[3]

Cannone M.. A generalization of a theorem by Kato on Navier-Stokes equations. Revista Mat. Iberoamer., 1997, 13: 515-541

[4]

Chemin J. Y.. Fluides parfaits incompressibles. Astérisque, 230, 1995, Paris: Soc. Math. France

[5]

Chemin, J. Y., Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, 53–136.

[6]

Chemin J. Y.. Théorémes d’unicité pour le systéme de Navier-Stokes tridimensionnel. J. Anal. Math., 1999, 77: 27-50

[7]

Fujita H., Kato T.. On the Navier-Stokes initial value problem I. Archiv for Rat. Mech. Anal., 1964, 16: 269-315

[8]

Furioli G., Lemarié-Rieusset P. G., Terraneo E.. Unicité dans L 3(ℝ3) et d’autres espaces limites pour Navier-Stokes. Revista Mat. Iberoamer., 2000, 16: 605-667

[9]

Kato T.. Strong L p solutions of the Navier-Stokes equations in ℝm with applications to weak solutions. Math. Z., 1984, 187: 471-480

[10]

Oru, F., Rôle des Oscillations dan Quelques Problémes d’Analyse non Linéairê, Thése, École Normale Supérieure de Cachan, 1998.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/