Inequalities of eigenvalues for the Dirac operator on compact complex spin submanifolds in complex projective spaces

Daguang Chen , Hejun Sun

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 165 -178.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 165 -178. DOI: 10.1007/s11401-007-0064-8
Article

Inequalities of eigenvalues for the Dirac operator on compact complex spin submanifolds in complex projective spaces

Author information +
History +
PDF

Abstract

For a compact complex spin manifold M with a holomorphic isometric embedding into the complex projective space, the authors obtain the extrinsic estimates from above and below for eigenvalues of the Dirac operator, which depend on the data of an isometric embedding of M. Further, from the inequalities of eigenvalues, the gaps of the eigenvalues and the ratio of the eigenvalues are obtained.

Keywords

Eigenvalue / Dirac operator / Yang-type inequality / Test spinor

Cite this article

Download citation ▾
Daguang Chen, Hejun Sun. Inequalities of eigenvalues for the Dirac operator on compact complex spin submanifolds in complex projective spaces. Chinese Annals of Mathematics, Series B, 2008, 29(2): 165-178 DOI:10.1007/s11401-007-0064-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anghel N.. Extrinsic upper bounds for eigenvalues of Dirac-type operators. Proc. Amer. Math. Soc., 1993, 117: 501-509

[2]

Ashbaugh M. S.. Davies E. B., Safalov Y.. Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry (Edinburgh, 1998), 1999, Cambridge: Cambridge Univ. Press 95-139

[3]

Ashbaugh M. S.. Universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Prottter, and H. C. Yang. Proc. Indian Acad. Sci. Math. Sci., 2002, 112: 3-30

[4]

Bär C.. Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom., 1998, 16: 573-596

[5]

Baum H.. An upper bound for the first eigenvalue of the Dirac operator on compact spin manifolds. Math. Z., 1991, 206: 409-422

[6]

Bunke U.. Upper bounds of small eigenvalues of the Dirac operator and isometric immersions. Ann. Glob. Anal. Geom., 1991, 9: 109-116

[7]

Chen, D. G., Extrinsic eigenvalue estimates of the Dirac operator. math.DG/0701847.

[8]

Cheng Q. M., Yang H. C.. Estimates on eigenvalues of Laplacian. Math. Ann., 2005, 331: 445-460

[9]

Cheng Q. M., Yang H. C.. Inequalities of eigenvalues on Laplacian on domains and compact hypersurfaces in complex projective spaces. J. Math. Soc. Japan, 2006, 58: 545-561

[10]

Cheng Q. M., Yang H. C.. Bounds on eigenvlues of Dirichlet Laplacian. Math. Ann., 2007, 337: 159-175

[11]

Friedrich T.. Dirac operators in Riemannian geometry. Graduate Studies in Mathematics, 2000, Providence, Rhode Island: A. M. S.

[12]

Gilkey P. B.. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 1995 2nd edition Boca Raton: CRC Press

[13]

Hile G. N., Protter M. H.. Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J., 1980, 29: 523-538

[14]

Li P.. Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helv., 1980, 55: 347-363

[15]

Lawson H., Michelsohn M.. Spin Geometry, 1989, Princenton: Princenton Univ. Press

[16]

Payne G. E., Polya G., Weinberger H. F.. On the ration of consecutive eigenvalue. J. Math. Phys., 1956, 35: 289-298

[17]

Sun, H. J., Cheng, Q. M. and Yang, H. C., Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math., to appear.

[18]

Yang, H. C., An Estimate of the Differance Between Consecutive Eigenvalues, preprint, IC/91/60 of ICTP, Trieste, 1991, Revised preprint, from Academia Sinica, 1995.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/