Qualitative analysis on a reaction-diffusion prey-predator model and the corresponding steady-states

Qunyi Bie , Rui Peng

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 207 -220.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 207 -220. DOI: 10.1007/s11401-007-0027-0
Article

Qualitative analysis on a reaction-diffusion prey-predator model and the corresponding steady-states

Author information +
History +
PDF

Abstract

The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non-existence of positive non-constant steady-states are derived.

Keywords

Prey-predator model / Steady-state / Global stability / Non-existence

Cite this article

Download citation ▾
Qunyi Bie, Rui Peng. Qualitative analysis on a reaction-diffusion prey-predator model and the corresponding steady-states. Chinese Annals of Mathematics, Series B, 2009, 30(2): 207-220 DOI:10.1007/s11401-007-0027-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Braza P. A.. The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing. SIAM J. Appl. Math., 2003, 63: 889-904

[2]

Du Y. H., Hsu S. B.. A diffusive predator-prey model in heterogeneous environment. J. Diff. Eqs., 2004, 203: 331-364

[3]

Du Y. H., Wang M. X.. Asymptotic behavior of positive steady-states to a predator-prey model. Proc. Roy. Soc. Edinburgh Sect. A, 2006, 136: 759-778

[4]

Henry D.. Geometric theory of semilinear parabolic equations, 1981, Berlin: Springer-Verlag

[5]

Hsu S. B., Huang T. W.. Global stability for a class of predator-prey systems. SIAM J. Appl. Math., 1995, 55: 763-783

[6]

Lin C. S., Ni W. M., Takagi I.. Large amplitude stationary solutions to a chemotais systems. J. Diff. Eqs., 1988, 72: 1-27

[7]

Lou Y., Ni W. M.. Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqs., 1996, 131: 79-131

[8]

May R. M.. Stability and Complexity in Model Ecosystems, 1973, Princeton: Princeton University Press

[9]

Pang P. Y. H., Wang M. X.. Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. Roy. Soc. Edinburgh Sect. A, 2003, 133: 919-942

[10]

Pang P. Y. H., Wang M. X.. Strategy and stationary pattern in a three-species predator-prey model. J. Diff. Eqs., 2004, 200(2): 245-273

[11]

Peng R., Wang M. X.. Positive steady-states of the Holling-Tanner prey-predator model with diffusion. Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135: 149-164

[12]

Peng R., Wang M. X.. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model. Appl. Math. Lett., 2007, 20: 664-670

[13]

Rosenzweig M. L.. Paradox of enrichment: destabilization of exploitation systems in ecological time. Science, 1969, 171: 385-387

[14]

Saez E., Gonzalez-Olivares E.. Dynamics of a predator-prey model. SIAM J. Appl. Math., 1999, 59: 1867-1878

[15]

Tanner J. T.. The stability and the intrinsic growth rates of prey and predator populations. Ecology, 1975, 56: 855-867

[16]

Wang M. X.. Non-constant positive steady states of the Sel’kov model. J. Diff. Eqs., 2003, 190: 600-620

[17]

Wollkind D. J., Collings J. B., Logan J. A.. Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies. Bull. Math. Biol., 1988, 50: 379-409

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/