The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*

Xiuqing Chen , Li Chen , Huaiyu Jian

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 651 -664.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 651 -664. DOI: 10.1007/s11401-006-0568-7
Original Articles

The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*

Author information +
History +
PDF

Abstract

The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model, a fourth order parabolic system. Using semi-discretization in time and entropy estimate, the authors get the global existence of nonnegative weak solutions to the one-dimensional model with nonnegative initial and homogenous Neumann (or periodic) boundary conditions. Furthermore, by a logarithmic Sobolev inequality, it is proved that the periodic weak solution exponentially approaches its mean value as time increases to infinity.

Keywords

Quantum drift-diffusion / Weak solution / Long-time behavior / 35k35 / 35J60 / 65M12 / 65M20

Cite this article

Download citation ▾
Xiuqing Chen, Li Chen, Huaiyu Jian. The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*. Chinese Annals of Mathematics, Series B, 2007, 28(6): 651-664 DOI:10.1007/s11401-006-0568-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah Z. Angew. Math. Phys., 1998, 49: 251

[2]

Bleher Commun. Pure Appl. Math., 1994, 47: 923

[3]

Cáceres Trans. American Math. Society, 2004, 357: 1161

[4]

Chen SIAM J. Math. Anal., 2004, 36: 301

[5]

Ju, Q. C. and Chen, L., Semiclassical limit for bipolar quantum drift-diffusion model, preprint

[6]

Chen Z. Angew. Math. Phys., 2006, 58: 1

[7]

Chen, L. and Ju, Q. C., The semiclassical limit in the quantum drift-diffusion equations with isentrophic pressure, submitted

[8]

Chen, X., Chen, L. and Jian, H. Y., Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model, submitted

[9]

Dolbeault Commun. Math. Sci., 2006, 4: 275

[10]

Degond J. Stat. Phys., 2005, 118: 625

[11]

Jian Chin. Ann. Math., 2005, 26B: 413

[12]

Jüngel Nonlin. Anal., 2001, 47: 5873

[13]

Jüngel Quart. Appl. Math., 2004, 62: 569

[14]

Jüngel SIAM J. Math. Anal., 2000, 32: 760

[15]

Jüngel SIAM J. Num. Anal., 2001, 39: 385

[16]

Jüngel Math. Mod. Num. Anal., 2003, 37: 277

[17]

Jüngel Z. Angew. Math. Phys., 2003, 54: 377

[18]

Li Chin. Ann. Math., 2007, 28B: 205

[19]

Li Chin. Ann. Math., 2006, 27B: 193

[20]

Pinnau Transp. Theory Stat. Phys., 2002, 31: 367

[21]

Simon Ann. Mat. Pura Appl., 1987, 146: 65

[22]

Wang Chin. Ann. Math.,, 2006, 27B: 637

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/