Ordering trees with nearly perfect matchings by algebraic connectivity

Li Zhang , Yue Liu

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 71 -84.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 71 -84. DOI: 10.1007/s11401-006-0558-9
Article

Ordering trees with nearly perfect matchings by algebraic connectivity

Author information +
History +
PDF

Abstract

Let T 2k+1 be the set of trees on 2k+1 vertices with nearly perfect matchings and α(T) be the algebraic connectivity of a tree T. The authors determine the largest twelve values of the algebraic connectivity of the trees in T 2k+1. Specifically, 10 trees T 2,T 3,⋯,T 11 and two classes of trees T(1) and T(12) in T 2k+1 are introduced. It is shown in this paper that for each tree T 1 , T 1 T(1) and T 12 , T 12 T(12) and each i, j with 2 ≤ i < j <-11, α(T 1 ) = α(T 1 ) > α(T i) > α(T j) > α(T 12 ) = α(T 12 ). It is also shown that for each tree T with TT 2k+1 (T(1) ∪ {T 2,T 3,⋯,T 11} ∪ T(12)), α(T 12 ) > α(T).

Keywords

Laplacian eigenvalue / Tree / Nearly perfect matching / Algebraic connectivity

Cite this article

Download citation ▾
Li Zhang, Yue Liu. Ordering trees with nearly perfect matchings by algebraic connectivity. Chinese Annals of Mathematics, Series B, 2008, 29(1): 71-84 DOI:10.1007/s11401-006-0558-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cvetković D. M., Doob M., Sachs H.. Spectra of Graphs-Theory and Applications, 1979, Berlin: VEB Deutscher Verlag d. Wiss.

[2]

Fiedler M.. Algebraic connectivity graphs. Czech. Math. J., 1973, 23(98): 298-305

[3]

Fiedler M.. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J., 1975, 25(100): 619-633

[4]

Fiedler M.. Eigenvectors of acyclic matrices. Czech. Math. J., 1975, 25(100): 607-618

[5]

Kikland S., Neumann M., Shader B. L.. Characteristic vertices of weighted trees via Perron values. Linear Multilinear Algebra, 1996, 40: 311-325

[6]

Bapat R. B., Pati S.. Algebraic connectivity and the characteristic set of a graph. Linear Multilinear Algebra, 1998, 45: 247-273

[7]

Merris R.. Characteristic vertices of trees. Linear Multilinear Algebra, 1987, 22: 115-131

[8]

Grone R., Merris R.. Ordering trees by algebraic connectivity. Graphs Combi., 1990, 6: 229-237

[9]

Yin S.-H., Shu J.-L., Wu Y.-R.. Graft and algebraic connectivity of trees (in Chinese). J. East China Norm. Univ. (Natur. Sci.), 2005, 2: 6-15

[10]

Grone R., Merris R.. Algebraic connectivity of trees. Czech. Math. J., 1987, 37(112): 660-670

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/