Remarks on Thurston’s Construction of Pseudo-Anosov Maps of Riemann Surfaces

Chaohui Zhang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 85 -94.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 85 -94. DOI: 10.1007/s11401-006-0491-y
Article

Remarks on Thurston’s Construction of Pseudo-Anosov Maps of Riemann Surfaces

Author information +
History +
PDF

Abstract

It is well known that certain isotopy classes of pseudo-Anosov maps on a Riemann surface $\tilde S$ of non-excluded type can be defined through Dehn twists $t_{\tilde \alpha } $ and $t_{\tilde \beta } $ along simple closed geodesics $\tilde \alpha $ and $\tilde \beta $ on $\tilde S$, respectively. Let G be the corresponding Fuchsian group acting on the hyperbolic plane $\mathbb{H}$ so that ${\mathbb{H}}/G \cong \tilde S$. For any point a ∈ $\tilde S$ define $S = \tilde S\backslash \{ a\} $. In this article, the author gives explicit parabolic elements of G from which he constructs pseudo-Anosov classes on S that can be projected to a given pseudo-Anosov class on $\tilde S$ obtained from Thurston’s construction.

Keywords

Quasiconformal mappings / Riemann surfaces / Teichmüller spaces / Mapping classes / Dehn twists / Pseudo-Anosov / Bers fiber spaces

Cite this article

Download citation ▾
Chaohui Zhang. Remarks on Thurston’s Construction of Pseudo-Anosov Maps of Riemann Surfaces. Chinese Annals of Mathematics, Series B, 2008, 29(1): 85-94 DOI:10.1007/s11401-006-0491-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abikoff W.. The Real Analytic Theory of Teichmüller Spaces. Lecture Notes in Mathematics, 1980, Springer-Verlag: New York

[2]

Ahlfors L. V., Bers L.. Riemann’s mapping theorem for variable metrics. Ann. of Math., 1960, 72(2): 385-404

[3]

Bers L.. Fiber spaces over Teichmüller spaces. Acta Math., 1973, 130: 89-126

[4]

Bers L.. An extremal problem for quasiconformal mappings and a theorem by Thurston. Acta Math., 1978, 141: 73-98

[5]

Birman, J. S., Braids, Links and Mapping Class Groups, Ann. of Math. Studies, No. 82, Princeton University Press, Princeton, 1974.

[6]

Fathi A.. Dehn twists and pseudo-Anosov diffeomorphism. Invent. Math., 1987, 87: 129-151

[7]

Fathi, A., Laudenbach, F. and Poenaru, V., Travaux de Thurston sur les surfaces, Seminaire Orsay, Asterisque, Vol. 66-67, Soc. Math. de France, Paris, 1979.

[8]

Ivanov, N. V., Mapping class groups, Manuscript, December 21, 1998.

[9]

Kra I.. On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces. Acta Math., 1981, 146: 231-270

[10]

Long D., Morton H.. Hyperbolic 3-manifolds and surface automorphisms. Topology, 1986, 25: 575-583

[11]

Nag S.. Non-geodesic discs embedded in Teichmüller spaces. Amer. J. Math., 1982, 104: 339-408

[12]

Penner R. C.. A construction of pseudo-Anosov homeomorphisms. Proc. Amer. Math Soc., 1988, 104: 1-19

[13]

Thurston W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N. S.), 1988, 19: 417-431

[14]

Zhang C.. Hyperbolic mapping classes and their lifts on Bers fiber space. Chin. Ann. Math., 2007, 28B(1): 55-66

[15]

Zhang, C., Projections of hyperbolic mapping classes to simple Dehn twists, Complex Var. and Elliptic Equ., to appear, 2007.

[16]

Zhang, C., A characterization of a pseudo-Anosov mapping class on non-compact Riemann surfaces, preprint, 2006.

[17]

Zhang, C., Singularities of quadratic differentials and extremal Teichmüller mappings of Riemann surfaces, preprint, 2006.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/