PDF
Abstract
Let u = u(x, t, u 0) represent the global solution of the initial value problem for the one-dimensional fluid dynamics equation $u_t - \varepsilon u_{xxt} + \delta u_x + \gamma Hu_{xx} + \beta u_{xxx} + f(u)_x = \alpha u_{xx} ,u(x,0) = u_0 (x),$ where α > 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ε ≥ 0 are constants. This equation may be viewed as a one-dimensional reduction of n-dimensional incompressible Navier-Stokes equations. The nonlinear function satisfies the conditions f(0) = 0, |f(u)| → ∞ as |u| → ∞, and f ∈ C 1 (ℝ), and there exist the following limits $L_0 = \mathop {lim sup}\limits_{u \to 0} \frac{{f(u)}}{{u^3 }}andL_\infty = \mathop {lim sup}\limits_{u \to \infty } \frac{{f(u)}}{{u^5 }}.$. Suppose that the initial function u 0 ∈ L 1(ℝ) ∩ H 2(ℝ). By using energy estimates, Fourier transform, Plancherel’s identity, upper limit estimate, lower limit estimate and the results of the linear problem $v_t - \varepsilon v_{xxt} + \delta v_x + \gamma Hv_{xx} + \beta v_{xxx} = \alpha v_{xx} ,v(x,0) = v_0 (x),$ the author justifies the following limits (with sharp rates of decay) $\mathop {\lim }\limits_{t \to \infty } \left[ {(1 + t)^{m + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \smallint _\mathbb{R} |u_{x^m } (x,t)|^2 dx} \right] = \frac{1}{{2\pi }}\left( {\frac{\pi }{{2\alpha }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \frac{{m!!}}{{(4\alpha )^m }}\left[ {\smallint _\mathbb{R} u_0 (x)dx} \right]^2 ,$ if $\smallint _\mathbb{R} u_0 (x)dx \ne 0,$ where 0!! = 1, 1!! = 1 and m!! = 1 · 3 ⋯ · (2m–3) · (2m − 1). Moreover $ \mathop {\lim }\limits_{t \to \infty } \left[ {(1 + t)^{m + {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \smallint _\mathbb{R} |u_{x^m } (x,t)|^2 dx} \right] = \frac{1} {{2\pi }}\left( {\frac{\pi } {{2\alpha }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \frac{{(m + 1)!!}} {{(4\alpha )^{m + 1} }}\left[ {\smallint _\mathbb{R} \rho _0 (x)dx} \right]^2 , $ if the initial function u 0(x) = ρ 0′ (x), for some function ρ 0 ∈ C 1(ℝ) ∩ L 1(ℝ) and $ \smallint _\mathbb{R} \rho _0 (x)dx \ne 0. $.
Keywords
Exact limits
/
Sharp rates of decay
/
Fluid dynamics equation
/
Global smooth solutions
Cite this article
Download citation ▾
Linghai Zhang.
Solutions to some open problems in Fluid dynamics.
Chinese Annals of Mathematics, Series B, 2008, 29(2): 179-198 DOI:10.1007/s11401-006-0468-x
| [1] |
Albert J.. Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation. J. Diff. Equations, 1986, 63: 117-134
|
| [2] |
Albert J.. On the decay of solutions of the generalized Benjamin-Bona-Mahony equations. J. Math. Anal. Appl., 1989, 141: 527-537
|
| [3] |
Albert J., Toland J. F.. On the exact solutions of the intermediate long-wave equation. Diff. Integral Equations, 1994, 7: 601-612
|
| [4] |
Amick C. J., Bona J. L., Schonbek M. E.. Decay of solutions of some nonlinear wave equations. J. Diff. Equations, 1989, 81: 1-49
|
| [5] |
Bona J. L., Luo L. H.. Decay of solutions to nonlinear, dispersive wave equations. Diff. Integral Equations, 1993, 6: 961-980
|
| [6] |
Bona J. L., Luo L. H.. More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete Contin. Dyn. Syst., 1995, 1: 151-193
|
| [7] |
Chorin A. J., Hald O. H.. Viscosity-dependent inertial spectra of the Burgers and Korteweg-de Vries-Burgers equations. Proc. Natl. Acad. Sci. USA, 2005, 102: 3921-3923
|
| [8] |
Dix D. B.. Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equations. J. Diff. Equations, 1991, 90: 238-287
|
| [9] |
Dix D. B.. The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity. Commun. Partial Diff. Equations, 1992, 17: 1665-1693
|
| [10] |
Dix D. B.. Large-time behaviour of solutions of Burgers’ equation. Proc. Roy. Soc. Edinburgh Sect. A, 2002, 132: 843-878
|
| [11] |
Hopf E.. The partial differential equation u t+uu x = μu xx. , Commun. Pure Appl. Math., 1950, 3: 201-230
|
| [12] |
Schonbek M. E.. L 2 decay for weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal., 1985, 88: 209-222
|
| [13] |
Schonbek M. E.. Large time behaviour of solutions of the Navier-Stokes equations. Commun. Partial Diff. Equations, 1986, 11: 733-763
|
| [14] |
Xia D. X., Wu Z. R., Yan S. Z., Shu W. C.. Real Analysis and Functional Analysis, 1988, Beijing: Advanced Educational Publishing House (in Chinese)
|
| [15] |
Zhang L. H.. Decay estimates for solutions to initial value problems for the generalized nonlinear Korteweg-de Vries-Burgers equation. Chin. Ann. Math., 1995, 16A(1): 22-32
|
| [16] |
Zhang L. H.. Decay estimates for the solutions of some nonlinear evolution equations. J. Diff. Equations, 1995, 116: 31-58
|
| [17] |
Zhang L. H.. Decay of solution of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions. Nonlinear Anal., 1995, 25: 1343-1369
|
| [18] |
Zhang L. H.. Local Lipschitz continuity of a nonlinear bounded operator induced by a generalized Benjamin-Ono-Burgers equation. Nonlinear Anal., 2000, 39: 379-402
|
| [19] |
Zhang, L. H., New results of a general n-dimensional incompressible Navier-Stokes equations, J. Diff. Equations, submitted.
|
| [20] |
Zhang, L. H., Solutions to some open problems in n-dimensional fluid dynamics, New Research on Nonlinear Analysis, Frank Columbus (ed.), Nova Science Publishers, INC., 2008, to appear.
|