Bloch Constant of Holomorphic Mappings on the Unit Ball of ℂ n*

Jianfei Wang , Taishun Liu

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 677 -684.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 677 -684. DOI: 10.1007/s11401-006-0433-8
Original Articles

Bloch Constant of Holomorphic Mappings on the Unit Ball of ℂ n*

Author information +
History +
PDF

Abstract

In this paper, the authors establish distortion theorems for various subfamilies H k($\Bbb {B}$) of holomorphic mappings defined in the unit ball in ℂ n with critical points, where k is any positive integer. In particular, the distortion theorem for locally biholomorphic mappings is obtained when k tends to +∞. These distortion theorems give lower bounds on | det f′(z)| and Re det f′(z). As an application of these distortion theorems, the authors give lower and upper bounds of Bloch constants for the subfamilies β k(M) of holomorphic mappings. Moreover, these distortion theorems are sharp. When $\Bbb {B}$ is the unit disk in ℂ, these theorems reduce to the results of Liu and Minda. A new distortion result of Re det f′(z) for locally biholomorphic mappings is also obtained.

Keywords

Bloch constant / Holomorphic mappings / Locally biholomorphic mappings / Critical points / 32H02 / 32H99

Cite this article

Download citation ▾
Jianfei Wang, Taishun Liu. Bloch Constant of Holomorphic Mappings on the Unit Ball of ℂ n*. Chinese Annals of Mathematics, Series B, 2007, 28(6): 677-684 DOI:10.1007/s11401-006-0433-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors Trans. Amer. Math. Soc., 1938, 43: 359

[2]

Bloch Ann. Fac. Sci. Univ. Toulouse, 1925, 17: 1

[3]

Bochner Bull. Amer. Math. Soc., 1946, 52: 715

[4]

Bonk Proc. Amer. Math. Soc., 1990, 110: 889

[5]

Fitzgerald J. Geom. Anal., 1994, 4: 35

[6]

Gamaliel Acta Math. Sin., Engl. Ser., 2001, 17: 237

[7]

Hahn Trans. Amer. Math. Soc., 1973, 179: 263

[8]

Gong Chin. Ann. Math., 1996, 17B: 271

[9]

Harris Monatschefte f¨ur Mathematik, 1977, 83: 9

[10]

Heins Nagoya Math. J., 1962, 21: 1

[11]

Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domain, Science Press, China, 1958 (in Chinese); Translations of Mathematical Monographs, A.M.S., 6, 1963

[12]

Liu Pacific J. Math., 1992, 152: 347

[13]

Liu Trans. Amer. Math. Soc., 333, 1992, 333: 325

[14]

Takahashi Ann. of Math., 1951, 53: 464

[15]

Wu Acta Math., 1967, 119: 193

[16]

Gong Science in China, Series A, 1993, 36: 285

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/