Injectivity Radius and Cartan Polyhedron for Simply Connected Symmetric Spaces*

Ling Yang

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 685 -700.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 685 -700. DOI: 10.1007/s11401-006-0400-4
Original Articles

Injectivity Radius and Cartan Polyhedron for Simply Connected Symmetric Spaces*

Author information +
History +
PDF

Abstract

The author explores the relationship between the cut locus of an arbitrary simply connected and compact Riemannian symmetric space and the Cartan polyhedron of corresponding restricted root system, and computes the injectivity radius and diameter for every type of irreducible ones.

Keywords

Cartan polyhedron / Restricted root system / Orthogonal involutive Lie algebra / Dynkin diagram / Stake diagram / 53C35

Cite this article

Download citation ▾
Ling Yang. Injectivity Radius and Cartan Polyhedron for Simply Connected Symmetric Spaces*. Chinese Annals of Mathematics, Series B, 2007, 28(6): 685-700 DOI:10.1007/s11401-006-0400-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Araki J. Math. Osaka City Univ., 1962, 13: 1

[2]

Borel, A., Semisimple Groups and Riemannian Symmetric Spaces, Hindustan Book Agency, New Delhi, 1998

[3]

Cheeger, J. and Ebin, D., Comparison Theorem in Riemannian Geometry, North-Holland Publishing Company, Amsterdam, 1975

[4]

Cheeger Amer. J. Math., 1969, 91: 807

[5]

Crittenden Canadian J. Math., 1962, 14: 320

[6]

Grove Ann. Math., 1977, 106: 201

[7]

Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978

[8]

Knapp, A. W., Lie Group, Beyond an Introduction, Progress in Mathematics, Birkhäuser, Boston, 2002

[9]

Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Vol. 1, Interscience Publishers, New York, 1963

[10]

Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Vol. 2, Interscience Publishers, New York, 1963

[11]

Liu Chin. Ann. Math., 2006, 27B: 287

[12]

Xin, Y. L., Minimal Submanifolds and Related Topics, Nankai Tracts in Mathematics, World Scientific, Singapore, 2003

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/