Exponential and strong ergodicity for Markov processes with an application to queues

Yuanyuan Liu , Zhenting Hou

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 199 -206.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (2) : 199 -206. DOI: 10.1007/s11401-006-0390-2
Article

Exponential and strong ergodicity for Markov processes with an application to queues

Author information +
History +
PDF

Abstract

For an ergodic continuous-time Markov process with a particular state in its space, the authors provide the necessary and sufficient conditions for exponential and strong ergodicity in terms of the moments of the first hitting time on the state. An application to the queue length process of M/G/1 queue with multiple vacations is given.

Keywords

Markov processes / Queueing theory / Exponential ergodicity / Strong ergodicity

Cite this article

Download citation ▾
Yuanyuan Liu, Zhenting Hou. Exponential and strong ergodicity for Markov processes with an application to queues. Chinese Annals of Mathematics, Series B, 2008, 29(2): 199-206 DOI:10.1007/s11401-006-0390-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson W. J.. Continuous-Time Markov Chains, An Applications-Oriented Approach, 1991, New York: Springer-Verlag

[2]

Chen M. F.. From Markov Chains to Non-equilibrium Particle Systems, 1992, Singapore: World Scientific

[3]

Meyn S. P., Tweedie R. L.. Stability of Markovian processes III: Foster-Lyaunov criteria for Continuous-time rocesses. Adv. Appl. Prob., 1993, 25: 518-548

[4]

Down D., Meyn S. P., Tweedie R. L.. Exponential and uniform egoddicity of Markov processes. Ann. Prob., 1995, 23: 1671-1691

[5]

Hou Z. T., Liu Y. Y., Zhang H. J.. Subgeometric rates of convergence for a class of continuous-time Markov processes. J. Appl. Prob., 2005, 42: 698-712

[6]

Tuominen P., Tweedie R. L.. Exponential ergodicity in Markovian queueing and dam models. J. Appl. Prob., 1979, 16: 867-880

[7]

Meyn S. P., Tweedie R. L.. Markov Chains and Stochastic Stability, 1993, Berlin: Springer

[8]

Doshi B.. Abu el Ata N.. An M/G/1 queue with variable vacation, Modeling Techniques and Tools for Performance Analysis’85, 1986, Amsterdam: North-Holland 67-81

[9]

Levy H., Kleinrock L.. A queue with starter and a queue with vacations: Delay annlysis by decompostition. Opns. Res., 1986, 34: 426-436

[10]

Levy Y., Yechiali U.. Utilization of idle time in an M/G/1 queueing system. Manag. Sci., 1975, 22: 202-211

[11]

Fuhrman S.. A note on the M/G/1 queue with server vacation. Opns. Res., 1984, 32: 1368-1373

[12]

Harris C., Marchal W.. State dependence in M/G/1 server vacation models. Opns. Res., 1988, 36: 560-565

[13]

Hou Z. T., Liu Y. Y.. Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues. J. Appl. Prob., 2004, 41: 778-790

[14]

Foss S., Sapozhnikov A.. On the existence of moments for the busy period in a single-server queue. Math. Oper. Res., 2004, 29: 592-601

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/