Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups

Yongyang Jin

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 567 -574.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 567 -574. DOI: 10.1007/s11401-006-0291-4
Article

Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups

Author information +
History +
PDF

Abstract

The author obtains some weighted Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. These inequalities generalize some recent results due to N. Garofalo, E. Lanconelli, I. Kombe and P. Niu et al.

Keywords

Hardy-type inequalities / H-type groups / Anisotropic Heisenberg groups

Cite this article

Download citation ▾
Yongyang Jin. Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. Chinese Annals of Mathematics, Series B, 2008, 29(5): 567-574 DOI:10.1007/s11401-006-0291-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Garofalo N., Lanconelli E.. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble), 1990, 40(2): 313-356

[2]

Kombe, I., Sharp Hardy type inequalities on the Carnot group. arXiv:math.FA/0501522

[3]

Niu P., Zhang H., Wang Y.. Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Amer. Math. Soc., 2001, 129(12): 3623-3630

[4]

D’Ambrozio L.. Some Hardy inequalities on the Heisenberg group. Differ. Uravn., 2004, 40(4): 509-521

[5]

Garcia Azorero J. P., Peral Alnoso I.. Hardy inequalities and some critical elliptic and parabolic problems. J. Diff. Eqs., 1998, 144(2): 441-476

[6]

Goldstein J. A., Kombe I.. Nonlinear degenerate parabolic equations on the Heisenberg group. Int. J. Evol. Eqn., 2005, 1(1): 1-22

[7]

Sun M., Yang X.. Quasi-convex Functions in Carnot Groups. Chin. Ann. Math., 2007, 28B(2): 235-242

[8]

D’Ambrozio L.. Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci., 2005, 4(3): 451-486

[9]

Han J., Niu P., Han Y.. Some Hardy-type inequalities on groups of Heisenberg type (in Chinese). J. Systems Sci. Math. Sci., 2005, 25(5): 588-598

[10]

Kaplan A.. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc., 1980, 258(1): 147-153

[11]

Cowling M., Dooley A., Korányi A., Ricci F.. An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal., 1998, 8(2): 199-237

[12]

Cowling M., Dooley A., Korányi A. H-type groups and Iwasawa decompositions. Adv. Math., 1991, 87(1): 1-41

[13]

Kaplan, A., Lie groups of Heisenberg type, Conference on Differential Geometry on Homogeneous Spaces (Turin, 1983), Rend. Sem. mat. Univ. Politec. Torino, Special Issue, 1983, 117–130.

[14]

Korányi A.. Geometric properties of Heisenberg-type groups. Adv. in Math., 1985, 56(1): 28-38

[15]

Capogna L., Danielli D., Garofalo N.. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer. J. Math., 1996, 118(6): 1153-1196

[16]

Jin, Y. and Zhang, G., Fundamental solutions for a class of degenerate p-Laplacian operators and applications to Hardy type inequalities, preprint, 2006.

[17]

Tyson J. T.. Sharp weighted Young’s inequalities and Moser-Trudinger inequalities on the Heisenberg groups and Grushin spaces. Potential Anal., 2006, 24(4): 357-384

[18]

Folland G. B., Stein E. M.. Hardy Spaces on Homogeneous Groups, 1982, Princeton: Princeton University Press

[19]

Chang D., Greiner P.. Harmonic analysis and sub-Riemannian geometry on Heisenberg groups. Bull. Inst. Math. Acad. Sinica, 2002, 30(3): 153-190

[20]

Chang D., Tie J.. A note on Hermite and subelliptic operators. Acta Math. Sin., Engl. Ser., 2005, 21(4): 803-818

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/