A Partial Differential Inequality in Geological Models

Robert Eymard , Thierry Gallouët

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 709 -736.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 709 -736. DOI: 10.1007/s11401-006-0215-3
Original Articles

A Partial Differential Inequality in Geological Models

Author information +
History +
PDF

Abstract

Sedimentation and erosion processes in sedimentary basins can be modeled by a parabolic equation with a limiter on the fluxes and a constraint on the time variation. This limiter happens to satisfy a stationary scalar hyperbolic inequality, within a constraint, for which the authors prove the existence and the uniqueness of the solution. Actually, this solution is shown to be the maximal element of a convenient convex set of functions. The existence proof is obtained thanks to the use of a numerical scheme.

Keywords

Hyperbolic inequalities / Erosion and sedimentation models / 76S05 / 35K57 / 65N30 / 76M12

Cite this article

Download citation ▾
Robert Eymard, Thierry Gallouët. A Partial Differential Inequality in Geological Models. Chinese Annals of Mathematics, Series B, 2007, 28(6): 709-736 DOI:10.1007/s11401-006-0215-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, R. S. and Humphrey, N. F., Interaction of weathering and transport processes in the evolution of arid landscapes, Quantitative Dynamics Stratigraphy, T. A. Cross (ed.), Prenctice Hall, Englewood Cliffs, New Jersey, 1989, 349–361

[2]

Antontsev J. of Appl. Mech. and Tech. Phy., 2003, 44: 821

[3]

Burger J. Math. Anal. Appl., 2001, 264: 288

[4]

Droniou IMA J. Numer. Anal., 2003, 23: 507

[5]

DiPerna Arch. Rat. Mech. Anal., 1985, 88: 223

[6]

Eymard SIAM J. Numer. Anal., 2006, 43: 2344

[7]

Eymard Internat. J. Numer. Methods Engrg., 2004, 60: 527

[8]

Eymard Chin. Ann. Math, 1995, 16B: 1

[9]

Eymard, R., Gallouët, T. and Herbin, R., The finite volume method, Handbook of Numerical Analysis, Ph. Ciarlet and J. L. Lions (eds.), North Holland, Amsterdam, 7, 2000, 715–1022

[10]

Eymard C. R. Acad. Sci., 2004, 339: 299

[11]

Granjeon, D., Joseph, P. and Doligez, B., Using a 3-D stratigraphic model to optimize reservoir description, Hart’s Petroleum Engineer International, November, 1998, 51–58

[12]

Krushkov Math. USSR. Sb., 1970, 10: 217

[13]

Rivenaes Basin Research, 1992, 4: 133

[14]

Vignal Modél. Math. Anal. Numér., 1996, 30: 841

[15]

Mignot J. Math. Pures et Appl., 1976, 55: 353

[16]

Lévi Appl. Math. Letters, 2005, 18: 497

[17]

Lévi Adv. in Appl. Math., 2005, 35: 34

[18]

Droniou Adv. Differential Equations, 2000, 5: 1341

[19]

Droniou Math. Mod. Anal. Num., 2002, 36: 705

[20]

Droniou SIAM J. Numer. Anal., 2003, 41: 1997

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/