Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach*

Dan Dai , Roderick Wong

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 1 -34.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 1 -34. DOI: 10.1007/s11401-006-0195-3
Original Articles

Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach*

Author information +
History +
PDF

Abstract

In this paper, we study the asymptotics of the Krawtchouk polynomials $K^{N}_{n} {\left( {z;p,q} \right)}$ as the degree n becomes large. Asymptotic expansions are obtained when the ratio of the parameters $\frac{n}{N}$ tends to a limit c ∈ (0, 1) as n → ∞. The results are globally valid in one or two regions in the complex z-plane depending on the values of c and p; in particular, they are valid in regions containing the interval on which these polynomials are orthogonal. Our method is based on the Riemann-Hilbert approach introduced by Deift and Zhou.

Keywords

Global asymptotics / Krawtchouk polynomials / Parabolic cylinder functions / Airy functions / Riemann-Hilbert problems / 41A60 / 33C45

Cite this article

Download citation ▾
Dan Dai, Roderick Wong. Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach*. Chinese Annals of Mathematics, Series B, 2007, 28(1): 1-34 DOI:10.1007/s11401-006-0195-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, reprint of the 1972 edition, Dover Publications, New York, 1992.

[2]

Baik Int. Math. Res. Not., 2003, 15: 821

[3]

Baik, J., Kriecherbauer, T., McLaughlin, K. T.-R. and Miller, P. D., Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles, Ann. of Math. Stud., to appear.

[4]

Chihara SIAM J. Math. Anal., 1987, 18: 191

[5]

Dai, D. and Wong, R., Global asymptotics for Laguerre polynomials with large negative parameter – a Riemann-Hilbert approach, Ramanujan J., to appear.

[6]

Deift Comm. Pure Appl. Math., 1999, 52: 1335

[7]

Deift Comm. Pure Appl. Math., 1999, 52: 1491

[8]

Deift Ann. of Math., 1993, 137: 295

[9]

Dragnev J. Approx. Theory, 2000, 102: 120

[10]

Fokas Comm. Math. Phys., 1992, 147: 395

[11]

Ismail J. Comput. Appl. Math., 1998, 100: 121

[12]

Kuijlaars J. Comput. Appl. Math., 1998, 99: 255

[13]

Lenstra Discrete Math., 1972, 3: 125

[14]

Levenshtein IEEE Trans. Inform. Theory, 1995, 41: 1303

[15]

Li J. Approx. Theory, 2000, 106: 155

[16]

Lloyd Bell Syst. Tech. J., 1957, 36: 517

[17]

Markushevich, A. I., Theory of Functions of a Complex Variable, 2nd edition, Chelsea, New York, 1977.

[18]

Olver J. Res. Nat. Bur. Stand. Sect. B, 1959, 63B: 131

[19]

Qiu Comput. Methods Funct. Theory, 2004, 4: 189

[20]

Saff, E. B. and Totik, V., Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

[21]

Sloane, N. J. A., An introduction to association schemes and coding theory, Theory and Application of Special Functions, Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, 225–260.

[22]

Szegő, G., Orthogonal Polynomials, 4th edition, Colloquium Publications, Vol. 23, A. M. S., Providence RI, 1975.

[23]

Wang J. Math. Pures Appl., 2006, 85: 689

[24]

Wang, Z. and Wong, R., Globally uniform asymptotic expansions of the Stieltjes-Wigert polynomials, Anal. Appl. (Singap.), to appear.

[25]

Wong, R., Asymptotic Approximations of Integrals, Academic Press, Boston, 1989, Reprinted by SIAM, Philadephia, PA, 2001.

[26]

Wong Trans. Amer. Math. Soc., 2006, 358: 2663

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/