Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays*

Xiwei Liu , Tianping Chen

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 737 -746.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (6) : 737 -746. DOI: 10.1007/s11401-006-0194-4
Original Articles

Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays*

Author information +
History +
PDF

Abstract

In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay-dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.

Keywords

Time-delay / Synchronization / Exponential stability / Left eigenvector / 17B40 / 17B50

Cite this article

Download citation ▾
Xiwei Liu, Tianping Chen. Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays*. Chinese Annals of Mathematics, Series B, 2007, 28(6): 737-746 DOI:10.1007/s11401-006-0194-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strogatz Nature, 2001, 410: 268

[2]

Albert Rev. Mod. Phys., 2002, 74: 47

[3]

Newman SIAM Review, 2003, 45: 167

[4]

Mirollo SIAM J. Appl. Math., 1990, 50: 1645

[5]

Lu IEEE Trans. Circuits Syst. I, 2004, 51: 2491

[6]

Wu IEEE Trans. Circuits Syst. I, 1995, 42: 430

[7]

Lu Physica D, 2006, 213: 214

[8]

Lu Physica D, 2006, 221: 118

[9]

Zhou IEEE Trans. Circuits Syst. I, 2006, 53: 733

[10]

Berman, A. and Plemmons, R. J., Nonnegative Matrices in the Mathematical Science, Academic, New York, 1970

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/