Proof of Murphy-Cohen Conjecture on One-Dimensional Hard Ball Systems*

Lizhou Chen

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 293 -298.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 293 -298. DOI: 10.1007/s11401-006-0135-2
Original Articles

Proof of Murphy-Cohen Conjecture on One-Dimensional Hard Ball Systems*

Author information +
History +
PDF

Abstract

We prove the Murphy and Cohen's conjecture that the maximum number of collisions of n + 1 elastic particles moving freely on a line is $\frac{{n{\left( {n + 1} \right)}}}{2}$ if no interior particle has mass less than the arithmetic mean of the masses of its immediate neighbors. In fact, we prove the stronger result that, for the same conclusion, the condition that no interior particle has mass less than the geometric mean, rather than the arithmetic mean, of the masses of its immediate neighbors suffices.

Keywords

Hard ball / Elastic collision / Billiard / Reflection group / Numbers game / 70F99 / 51F15 / 20F55

Cite this article

Download citation ▾
Lizhou Chen. Proof of Murphy-Cohen Conjecture on One-Dimensional Hard Ball Systems*. Chinese Annals of Mathematics, Series B, 2007, 28(3): 293-298 DOI:10.1007/s11401-006-0135-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Björner, A. and Brenti, F., Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005

[2]

Burago Topology Appl., 2002, 122: 87

[3]

Gal'perin Trudy Moskov. Mat. Obshch., 1983, 43: 142

[4]

Murphy J. Statist. Phys., 1993, 71: 1063

[5]

Murphy T. J., Cohen E. G. D., Sz´asz D.. On the sequences of collisions among hard spheres in infinite space, Hard Ball Systems and the Lorentz Gas. Encycl. Math. Sci., 2000, 101(2): 29-49

[6]

Sandri Phys. Rev. Lett., 1964, 13: 743

[7]

Sevryuk Teoret. Mat. Fiz., 1993, 96: 64

[8]

Sinai Uspehi Mat. Nauk., 1978, 33: 229

[9]

Thurston Bull. Amer. Phys. Soc., 1964, 9: 386

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/