Volume of Domains in Symmetric Spaces*

Ximo Gual-Arnau , Antonio M. Naveira

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 521 -526.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 521 -526. DOI: 10.1007/s11401-006-0133-4
Original Articles

Volume of Domains in Symmetric Spaces*

Author information +
History +
PDF

Abstract

The authors derive a formula for the volume of a compact domain in a symmetricspace from normal sections through a special submanifold in the symmetric space. Thisformula generalizes the volume of classical domains as tubes or domains given as motionsalong the submanifold. Finally, some stereological considerations regarding this formulaare provided.

Keywords

Curvature-adapted submanifold / Lie triple systematic normal bundle / Root decomposable normal bundle / Symmetric space / Volume / 53C35 / 53C21

Cite this article

Download citation ▾
Ximo Gual-Arnau, Antonio M. Naveira. Volume of Domains in Symmetric Spaces*. Chinese Annals of Mathematics, Series B, 2007, 28(5): 521-526 DOI:10.1007/s11401-006-0133-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baddeley, A. and Jensen, E. B. V., Stereology for Statisticians, Chapman & Hall/CRC, Boca Raton, 2005.

[2]

Cruz-Orive J. Microsc., 1997, 186: 93

[3]

Domingo-Juan DifferentialGeom. Appl., 2004, 21: 229

[4]

Domingo-Juan Ann. Global Anal. Geom., 2004, 26: 253

[5]

Gray, A., Tubes, Birkhäusser, Basel, 2003.

[6]

Gray Ann. Global Anal.Geom., 2000, 18: 241

[7]

Gual-Arnau Image Anal. Stereol., 2005, 24: 35

[8]

Gundersen J. Microsc., 1988, 151: 3

[9]

Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

[10]

Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Interscience Publishers, New York,1969.

[11]

Koike Kyushu J. Math., 2002, 56: 267

[12]

Naveira Differential Geom. Appl., 1997, 7: 101

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/