Proper Holomorphic Maps from Domains in ℂ2 with Transverse Circle Action

Adam Coffman , Yifei Pan

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 533 -542.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 533 -542. DOI: 10.1007/s11401-006-0098-3
Original Articles

Proper Holomorphic Maps from Domains in ℂ2 with Transverse Circle Action

Author information +
History +
PDF

Abstract

The authors consider proper holomorphic mappings between smoothly bounded pseudoconvex regions in complex 2-space, where the domain is of finite type and admits a transverse circle action. The main result is that the closure of each irreducible component of the branch locus of such a map intersects the boundary of the domain in the union of finitely many orbits of the group action.

Keywords

Proper holomorphic map / Pseudoconvex domain / 32H35 / 32T25

Cite this article

Download citation ▾
Adam Coffman, Yifei Pan. Proper Holomorphic Maps from Domains in ℂ2 with Transverse Circle Action. Chinese Annals of Mathematics, Series B, 2007, 28(5): 533-542 DOI:10.1007/s11401-006-0098-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barrett Math. Ann., 1981/82, 258: 441

[2]

Coupet Nagoya Math. J., 1999, 154: 57

[3]

Pan Math. Z., 1991, 208: 289

[4]

Coupet Nagoya Math. J., 2001, 164: 1

[5]

D’Angelo, J., Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993. MR1224231 (94i:32022)

[6]

Bedford Proc. Amer. Math. Soc., 1985, 93: 232

[7]

Bell Amer. J. Math., 1984, 106: 639

[8]

Bell Duke Math. J., 1982, 49: 385

[9]

Diederich Invent. Math., 1982, 67: 363

[10]

Range, R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, GTM 108, Springer, New York, 1986. MR0847923 (87i:32001)

[11]

Rudin, W., Function Theory in the Unit Ball of ℂ n, GMW 241, Springer-Verlag, New York, 1980. MR0601594 (82i:32002)

[12]

Bedford Bull. Amer. Math. Soc., 1984, 10: 157

[13]

Bell Proc. Sympos. Pure Math., 1984, 41: 1

[14]

Bedford Annals of Math., 1978, 107: 555

[15]

Fornæss Amer. J. Math., 1994, 116: 737

[16]

Diederich Math. Ann., 1982, 259: 279

[17]

Grauert, H. and Remmert, R., Coherent Analytic Sheaves, GMW 265, Springer, Berlin, 1984. MR0755331 (86a:32001)

[18]

Bedford Duke Math. J., 1982, 49: 477

[19]

Huang Math. Res. Lett., 1998, 5: 247

[20]

Boothby, W., An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition, Pure and Applied Math., 120, Academic Press, Boston, 1986. MR0861409 (87k:58001)

[21]

Diederich Invent. Math., 1977, 39: 129

[22]

Pinčuk Mat. Zametki, 1974, 15: 205

[23]

Baouendi Invent. Math., 1985, 82: 359

[24]

Chirka Uspekhi Mat. Nauk, 1991, 46: 81

[25]

Tanaka J. Math. Soc. Japan, 1962, 14: 397

[26]

Bell Math. Z., 1988, 199: 357

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/