Global Entropy Solutions of the Cauchy Problem for Nonhomogeneous Relativistic Euler System*

Yachun Li , Anjiao Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5)

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) DOI: 10.1007/s11401-006-0048-0
Original Articles

Global Entropy Solutions of the Cauchy Problem for Nonhomogeneous Relativistic Euler System*

Author information +
History +
PDF

Abstract

We analyze the 2 × 2 nonhomogeneous relativistic Euler equations for perfect fluids in special relativity. We impose appropriate conditions on the lower order source terms and establish the existence of global entropy solutions of the Cauchy problem under these conditions.

Keywords

Relativistic Euler system / Entropy solutions / Riemann solutions / Glimm scheme / 35B40 / 35A05 / 76Y05 / 35B35 / 35L65 / 85A05

Cite this article

Download citation ▾
Yachun Li, Anjiao Wang. Global Entropy Solutions of the Cauchy Problem for Nonhomogeneous Relativistic Euler System*. Chinese Annals of Mathematics, Series B, 2006, 27(5): DOI:10.1007/s11401-006-0048-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bianchini Proc. Amer. Math. Soc., 2002, 130: 1961

[2]

Chen, G.-Q., Euler equations and related hyperbolic conservation laws, Handbook of Differential Equations, Vol. 2, C. M. Dafermos and E. Feireisl (eds.), Elsevier Science B. V., Amsterdam, the Netherlands, 2005, 1–104.

[3]

Chen J. Differential Equations, 2003, 191: 277

[4]

Chen J. Differential Equations, 2004, 202: 332

[5]

Chen, G.-Q. and LeFloch, P., Existence theory for the relativistic Euler equations, 2005, in preparation.

[6]

Chen Comm. Partial Differencial Equations, 1995, 20: 1605

[7]

Frid Comm. Math. Phys., 2004, 250: 335

[8]

Glimm Comm. Pure. Appl. Math., 1965, 18: 697

[9]

Hsu Methods Appl. Anal., 2001, 8: 159

[10]

Hsu J. Differential Equations, 2004, 201: 1

[11]

Kunik J. Comput. Phys., 2003, 187: 572

[12]

Kunik J. Comput. Phys.,, 2003, 192: 695

[13]

Kunik Numer. Math., 2004, 97: 159

[14]

Lax Comm. Pure. Appl. Math., 1957, 10: 537

[15]

Li, T.-T. and Qin, T., Physics and Parital Differential Equations (in Chinese), 2nd edition, Higher Eud- cation Press, Beijing, 2005.

[16]

Li Z. Angew. Math. Phys., 2005, 56: 239

[17]

Li Chin. Ann. Math., 2005, 26B: 491

[18]

Liang Astrophys. J., 1977, 211: 361

[19]

Min J. Math. Kyoto Univ., 1997, 38: 525

[20]

Makino J. Math. Kyoto Univ., 1995, 35: 105

[21]

Makino Kodai Math. J., 1995, 18: 365

[22]

Mizohata Japan J. Indust. Appl. Math., 1997, 14: 125

[23]

Nishida Proc. Japan Acad., 1968, 44: 642

[24]

Smoller, J., Shock Waves and Reaction Diffusion Equations, Springer, Berlin, Heidelberg, New York, 1983.

[25]

Smoller Comm. Math. Phys., 1993, 156: 67

[26]

Taub Phys. Rev., 1957, 107: 884

[27]

Thompson J. Fluid Mech., 1986, 171: 365

[28]

Thorne Astrophys. J., 1973, 179: 897

[29]

Wang, A., Global Existence of Entropy Solutions to Cauchy Problem for the Nonhomogeneous Relativistic Euler Equations, Dissertation, Shanghai Jiao Tong University, 2005.

[30]

Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972.

[31]

Ying Comm. Pure. Appl. Math., 1980, 33: 579

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/