Conformal CMC-Surfaces in Lorentzian Space Forms*
Changxiong Nie , Xiang Ma , Changping Wang
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 299 -310.
Conformal CMC-Surfaces in Lorentzian Space Forms*
Let ℚ3 be the common conformal compactification space of the Lorentzian space forms $\mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $. We study the conformal geometry of space-like surfaces in ℚ3. It is shown that any conformal CMC-surface in ℚ3 must be conformally equivalent to a constant mean curvature surface in $\mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $. We also show that if x : M → ℚ3 is a space-like Willmore surface whose conformal metric g has constant curvature K, then either K = −1 and x is conformally equivalent to a minimal surface in $\mathbb{R}^{3}_{1}$, or K = 0 and x is conformally equivalent to the surface $\mathbb{H}^{1} {\left( {\frac{1}{{{\sqrt 2 }}}} \right)} \times \mathbb{H}^{1} {\left( {\frac{1}{{{\sqrt 2 }}}} \right)}\;{\text{in}}\;\mathbb{H}^{3}_{1} .$
Conformal geometry / Willmore surfaces / Lorentzian space / 53A30 / 53B30
| [1] |
|
| [2] |
|
| [3] |
Blaschke, W., Vorlesungen ¨uber Differentialgeometrie, Vol. 3, Springer, Berlin, 1929 |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Hertrich-Jeromin, U., Introduction to M¨obius Differential Geometry, London Math. Soc. Lecture Note Series, Vol. 300, Cambridge University Press, Cambridge, 2003 |
| [8] |
|
| [9] |
Ma, X. and Wang, C. P., Willmore surfaces of constant Moebius curvature, Annals of Global Analysis and Geometry, to appear |
| [10] |
O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983 |
| [11] |
|
| [12] |
|
/
| 〈 |
|
〉 |