Conformal CMC-Surfaces in Lorentzian Space Forms*

Changxiong Nie , Xiang Ma , Changping Wang

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 299 -310.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 299 -310. DOI: 10.1007/s11401-006-0041-7
Original Articles

Conformal CMC-Surfaces in Lorentzian Space Forms*

Author information +
History +
PDF

Abstract

Let ℚ3 be the common conformal compactification space of the Lorentzian space forms $\mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $. We study the conformal geometry of space-like surfaces in ℚ3. It is shown that any conformal CMC-surface in ℚ3 must be conformally equivalent to a constant mean curvature surface in $\mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $. We also show that if x : M → ℚ3 is a space-like Willmore surface whose conformal metric g has constant curvature K, then either K = −1 and x is conformally equivalent to a minimal surface in $\mathbb{R}^{3}_{1}$, or K = 0 and x is conformally equivalent to the surface $\mathbb{H}^{1} {\left( {\frac{1}{{{\sqrt 2 }}}} \right)} \times \mathbb{H}^{1} {\left( {\frac{1}{{{\sqrt 2 }}}} \right)}\;{\text{in}}\;\mathbb{H}^{3}_{1} .$

Keywords

Conformal geometry / Willmore surfaces / Lorentzian space / 53A30 / 53B30

Cite this article

Download citation ▾
Changxiong Nie, Xiang Ma, Changping Wang. Conformal CMC-Surfaces in Lorentzian Space Forms*. Chinese Annals of Mathematics, Series B, 2007, 28(3): 299-310 DOI:10.1007/s11401-006-0041-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alias Geometriae Dedicata, 1996, 60: 301

[2]

Babich Duke Math. J., 1993, 72: 151

[3]

Blaschke, W., Vorlesungen ¨uber Differentialgeometrie, Vol. 3, Springer, Berlin, 1929

[4]

Bryant J. Diff. Geom., 1984, 20: 23

[5]

Cahen J. Math. Pures et Appl., 1983, 62: 327

[6]

Deng Sci. China Ser. A, 2005, 35: 1361

[7]

Hertrich-Jeromin, U., Introduction to M¨obius Differential Geometry, London Math. Soc. Lecture Note Series, Vol. 300, Cambridge University Press, Cambridge, 2003

[8]

Hertrich-Jeromin J. Reihe Angew. Math., 1992, 430: 21

[9]

Ma, X. and Wang, C. P., Willmore surfaces of constant Moebius curvature, Annals of Global Analysis and Geometry, to appear

[10]

O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983

[11]

Pinkall Invent. Math., 1985, 81: 379

[12]

Pinkall Math. Intell., 1987, 9: 38

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/