Note on a Conjecture of Gopakumar-Vafa

Jun Li* , Baosen Wu

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 219 -242.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 219 -242. DOI: 10.1007/s11401-006-0038-2
Original Articles

Note on a Conjecture of Gopakumar-Vafa

Author information +
History +
PDF

Abstract

We rephrase the Gopakumar-Vafa conjecture on genus zero Gromov-Witten invariants of Calabi-Yau threefolds in terms of the virtual degree of the moduli of pure dimension one stable sheaves and investigate the conjecture for K3 fibred local Calabi-Yau threefolds.

Keywords

Calabi-Yau threefold / Gromov-Witten invariants / Moduli of stable sheaves / 14D20 / 14D21 / 14J30 / 14N35

Cite this article

Download citation ▾
Jun Li*, Baosen Wu. Note on a Conjecture of Gopakumar-Vafa. Chinese Annals of Mathematics, Series B, 2006, 27(2): 219-242 DOI:10.1007/s11401-006-0038-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrend Invent. Math., 1997, 127: 601

[2]

Behrend Invent. Math., 1997, 128: 45

[3]

Bryan J. Algebraic Geom., 2001, 10: 549

[4]

Bryan J. Amer. Math. Soc., 2000, 13: 371

[5]

Bryan Geom. Topol., 2001, 5: 287

[6]

Gopakumar, R. and Vafa, C., M-Theory and Topological Strings-II. hep-th/9812127

[7]

Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.

[8]

Hosono, S., Saito, M.-H. and Takahashi, A., Relative Lefschetz Action and BPS State Counting, Internat. Math. Res. Notices 2001, No. 15, 783-816. math.AG/0105148

[9]

Karp, D., Liu, C.-C. M. and Marino, M., The local Gromov-Witten invariants of configurations of rational curves. math.AG/0506488

[10]

Katz, S., Genus zero Gopakumar-Vafa invariants of contractible curves. math.AG/0601193

[11]

Katz Adv. Theor. Math. Phys., 1999, 3: 1445

[12]

Lee, J.-H. and Leung, N.-C., Yau-Zaslow formula on K3 surfaces for non-primitive classes. math.SG/0404537

[13]

Li, J., A note on enumerating rational curves in a K3 surface, Geometry and Nonlinear Partial Differential Equations (Hangzhou, 2001), 53-62; AMS/IP Stud. Adv. Math., 29, Amer. Math. Soc., Providence, RI, 2002.

[14]

Li J. Amer. Math. Soc., 1998, 11: 119

[15]

Maruyama J. Math. Kyoto Univ., 1978, 18: 557

[16]

Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I. math.AG/0312059; Gromov-Witten theory and Donaldson-Thomas theory, II. math.AG/0406092

[17]

Mukai Invent. Math., 1984, 77: 101

[18]

Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, 3rd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994.

[19]

Simpson Inst. Hautes Études Sci. Publ. Math., 1994, 79: 47

[20]

Thomas J. Diff. Geom., 2000, 54: 367

[21]

Wu, B. S., The number of rational curves on K3 surfaces, preprint. math.AG/0602280

[22]

Yau Nuclear Phys. B, 1996, 471: 503

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/