PDF
Abstract
Compact Kähler manifolds with semi-positive Ricci curvature have been investigated by various authors. From Peternell’s work, if M is a compact Kähler n-manifold with semi-positive Ricci curvature and finite fundamental group, then the universal cover has a decomposition $ \ifmmode\expandafter\tilde\else\expandafter\~\fi{M} \cong X_{1} \times \cdots \times X_{m} $, where X j is a Calabi-Yau manifold, or a hyperKähler manifold, or X j satisfies H 0(X j , Ω p) = 0. The purpose of this paper is to generalize this theorem to almost non-negative Ricci curvature Kähler manifolds by using the Gromov-Hausdorff convergence. Let M be a compact complex n-manifold with non-vanishing Euler number. If for any ∈ > 0, there exists a Kähler structure (J ∈, g ∈) on M such that the volume ${\text{Vol}}_{{g_{ \in } }} {\left( M \right)} < V$, the sectional curvature |K(g ∈)| < Λ2, and the Ricci-tensor Ric(g ∈)> −∈g ∈, where V and Λ are two constants independent of ∈. Then the fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such that the universal covering of X has a decomposition, $ \ifmmode\expandafter\tilde\else\expandafter\~\fi{X} \cong X_{1} \times \cdots \times X_{s} $, where X i is a Calabi-Yau manifold, or a hyperKähler manifold, or X i satisfies H 0(X i , Ω p) = {0}, p > 0.
Keywords
Gromov-Hausdorff
/
Ricci curvature
/
Kähler metric
/
53C55
/
53C21
Cite this article
Download citation ▾
Yuguang Zhang.
Kähler Manifolds with Almost Non-negative Ricci Curvature.
Chinese Annals of Mathematics, Series B, 2007, 28(4): 421-428 DOI:10.1007/s11401-005-0584-z
| [1] |
Agmon Comm. on Pure. Appl. Math., 1964, 17: 35
|
| [2] |
Anderson Invent. Math., 1990, 102: 429
|
| [3] |
Besse, A. L., Einstein Manifolds, Ergebnisse der Math., Springer-Verlag, Berlin-New York, 1987
|
| [4] |
Cheeger J. Differ. Geom., 1986, 23: 309
|
| [5] |
Demaily Comp. Math., 1993, 89: 217
|
| [6] |
Fang Asian J. Math., 2002, 6: 385
|
| [7] |
Fukaya Ann. of Math., 1992, 136: 253
|
| [8] |
Gallot, S., A Soblev inequality and some geometric applications, Spectra of Riemannian Manifolds, Kaigai, Tokyo, 1983, 45–55
|
| [9] |
Griffiths, H. and Harris, J., Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978
|
| [10] |
Li Ann. Sci. École Norm. Sup., 1980, 13: 451
|
| [11] |
Morrow, J. and Kodaira, K., Complex Manifolds, Holt, Rinenart and Winston, New York, 1971
|
| [12] |
Mok Math. Z., 1986, 191: 303
|
| [13] |
Paun Comm. Anal. Geom., 2001, 9: 35
|
| [14] |
Peternell, T., Manifolds of semi-positive curvature, Lecture Notes in Math., 1646, Springer-Verlag, 1996, 98–142
|
| [15] |
Ruan J. Differ. Geom., 1999, 52: 1
|
| [16] |
Schoen, R. and Yau, S. T., Lectures on Differential Geometry, International Press, Boston, 1994
|
| [17] |
Wu, H., The Bochner technique differential geometry, Mathematical Reports, Vol. 3, Part 2, Harwood Academic Publishers, London, 1988, 289–538
|
| [18] |
Yamaguchi J. Differ. Geom., 1988, 28: 157
|