Kähler Manifolds with Almost Non-negative Ricci Curvature

Yuguang Zhang

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 421 -428.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 421 -428. DOI: 10.1007/s11401-005-0584-z
Original Articles

Kähler Manifolds with Almost Non-negative Ricci Curvature

Author information +
History +
PDF

Abstract

Compact Kähler manifolds with semi-positive Ricci curvature have been investigated by various authors. From Peternell’s work, if M is a compact Kähler n-manifold with semi-positive Ricci curvature and finite fundamental group, then the universal cover has a decomposition $ \ifmmode\expandafter\tilde\else\expandafter\~\fi{M} \cong X_{1} \times \cdots \times X_{m} $, where X j is a Calabi-Yau manifold, or a hyperKähler manifold, or X j satisfies H 0(X j , Ω p) = 0. The purpose of this paper is to generalize this theorem to almost non-negative Ricci curvature Kähler manifolds by using the Gromov-Hausdorff convergence. Let M be a compact complex n-manifold with non-vanishing Euler number. If for any ∈ > 0, there exists a Kähler structure (J , g ) on M such that the volume ${\text{Vol}}_{{g_{ \in } }} {\left( M \right)} < V$, the sectional curvature |K(g )| < Λ2, and the Ricci-tensor Ric(g )> −∈g , where V and Λ are two constants independent of ∈. Then the fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such that the universal covering of X has a decomposition, $ \ifmmode\expandafter\tilde\else\expandafter\~\fi{X} \cong X_{1} \times \cdots \times X_{s} $, where X i is a Calabi-Yau manifold, or a hyperKähler manifold, or X i satisfies H 0(X i , Ω p) = {0}, p > 0.

Keywords

Gromov-Hausdorff / Ricci curvature / Kähler metric / 53C55 / 53C21

Cite this article

Download citation ▾
Yuguang Zhang. Kähler Manifolds with Almost Non-negative Ricci Curvature. Chinese Annals of Mathematics, Series B, 2007, 28(4): 421-428 DOI:10.1007/s11401-005-0584-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agmon Comm. on Pure. Appl. Math., 1964, 17: 35

[2]

Anderson Invent. Math., 1990, 102: 429

[3]

Besse, A. L., Einstein Manifolds, Ergebnisse der Math., Springer-Verlag, Berlin-New York, 1987

[4]

Cheeger J. Differ. Geom., 1986, 23: 309

[5]

Demaily Comp. Math., 1993, 89: 217

[6]

Fang Asian J. Math., 2002, 6: 385

[7]

Fukaya Ann. of Math., 1992, 136: 253

[8]

Gallot, S., A Soblev inequality and some geometric applications, Spectra of Riemannian Manifolds, Kaigai, Tokyo, 1983, 45–55

[9]

Griffiths, H. and Harris, J., Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978

[10]

Li Ann. Sci. École Norm. Sup., 1980, 13: 451

[11]

Morrow, J. and Kodaira, K., Complex Manifolds, Holt, Rinenart and Winston, New York, 1971

[12]

Mok Math. Z., 1986, 191: 303

[13]

Paun Comm. Anal. Geom., 2001, 9: 35

[14]

Peternell, T., Manifolds of semi-positive curvature, Lecture Notes in Math., 1646, Springer-Verlag, 1996, 98–142

[15]

Ruan J. Differ. Geom., 1999, 52: 1

[16]

Schoen, R. and Yau, S. T., Lectures on Differential Geometry, International Press, Boston, 1994

[17]

Wu, H., The Bochner technique differential geometry, Mathematical Reports, Vol. 3, Part 2, Harwood Academic Publishers, London, 1988, 289–538

[18]

Yamaguchi J. Differ. Geom., 1988, 28: 157

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/