The Christoffel-Minkowski Problem II: Weingarten Curvature Equations*

Pengfei Guan , Changshou Lin , Xi'nan Ma

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 595 -614.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 595 -614. DOI: 10.1007/s11401-005-0575-0
Original Articles

The Christoffel-Minkowski Problem II: Weingarten Curvature Equations*

Author information +
History +
PDF

Abstract

In this paper the authors discuss the existence and convexity of hypersurfaces with prescribed Weingarten curvature.

Keywords

Existence / Convexity / Weingarten curvature / 35J60 / 58G11

Cite this article

Download citation ▾
Pengfei Guan, Changshou Lin, Xi'nan Ma. The Christoffel-Minkowski Problem II: Weingarten Curvature Equations*. Chinese Annals of Mathematics, Series B, 2006, 27(6): 595-614 DOI:10.1007/s11401-005-0575-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aeppli Proc. Amer. Math. Soc., 1960, 11: 832

[2]

Alexandrov, A. D., Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ., 11, 1956, 5–17 = Amer. Soc. Trans. Ser. 2, 21, 1962, 341–354.

[3]

Bakelman I., Kantor B.. Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature. Geom. Topol., 1974, 1: 3-10

[4]

Caffarelli Duke Math. J., 1985, 52: 431

[5]

Caffarelli, L. A., Nirenberg, L. and Spruck, J., Nonlinear second order elliptic equations IV: Starshaped compactWeingarten hypersurfaces, Current Topics in Partial Differential Equations, Y. Ohya, K. Kasahara and N. Shimakura (eds.), Kinokunize, Tokyo, 1985, 1–26.

[6]

Chou Ann. Sc. Norm. Super. Pisa Cl. Sci., 1989, 16: 225

[7]

Delanoë Ann. Sci. Ecole Norm. Sup., 1985, 18: 635

[8]

Gerhardt, C., Closed Weingarten hypersurfaces in space forms, Geometric Analysis and the Calculus of Variation, F. Fort (ed.), International Press, Boston, 1996, 71–98.

[9]

Guan Ann. of Math., 2002, 156: 655

[10]

Guan, P. and Lin, C. S., On the equation det(u ij ij u) = u p f(x) on S n, NCTS in Tsing-Hua University, 2000, preprint.

[11]

Guan Invent. Math., 2003, 151: 553

[12]

Korevaar Arch. Ration. Mech. Anal., 1987, 91: 19

[13]

Oliker Comm. Partial Differential Equations, 1984, 9: 807

[14]

Singer Ann. Sc. Norm. Super. Pisa Cl. Sci., 1985, 12: 319

[15]

Treibergs Ann. Sc. Norm. Super. Pisa Cl. Sci., 1985, 12: 225

[16]

Treibergs J. Differential Geom., 1983, 18: 513

[17]

Yau, S.-T., Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton Univ. Press, 1982, 669–706.

[18]

Zhu Ann. Sc. Norm. Super. Pisa Cl. Sci., 1994, 21: 175

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/