An Inverse Problem for Maxwell's Equations in Anisotropic Media*

Shumin Li , Masahiro Yamamoto

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 35 -54.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 35 -54. DOI: 10.1007/s11401-005-0572-3
Original Articles

An Inverse Problem for Maxwell's Equations in Anisotropic Media*

Author information +
History +
PDF

Abstract

The authors consider Maxwell's equations for an isomagnetic anisotropic and inhomogeneous medium in two dimensions, and discuss an inverse problem of determining the permittivity tensor ${\left( {\begin{array}{*{20}c} {{\varepsilon _{1} }} & {{\varepsilon _{2} }} \\ {{\varepsilon _{2} }} & {{\varepsilon _{3} }} \\ \end{array} } \right)}$ and the permeability μ in the constitutive relations from a finite number of lateral boundary measurements. Applying a Carleman estimate, the authors prove an estimate of the Lipschitz type for stability, provided that ε1, ε2, ε3, μ satisfy some a priori conditions.

Keywords

Anisotropic media / Inverse problem / Maxwell's equations / Carleman estimate / Lipschitz stability / 35R25 / 35R30 / 35Q60

Cite this article

Download citation ▾
Shumin Li, Masahiro Yamamoto. An Inverse Problem for Maxwell's Equations in Anisotropic Media*. Chinese Annals of Mathematics, Series B, 2007, 28(1): 35-54 DOI:10.1007/s11401-005-0572-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bukhgeim, A. L., Introduction to the Theory of Inverse Problems, VSP, Utrecht, 2000.

[2]

Bukhgeim Soviet Math. Dokl., 1981, 24: 244

[3]

Duvaut, G. and Lions, J. L., Inequalities in Mechanics and Physics, Springer-Verlag, 1976.

[4]

Imanuvilov Comm. Pure Appl. Math., 2003, 56: 1366

[5]

Imanuvilov Inverse Problems, 2001, 17: 717

[6]

Imanuvilov, O. Y. and Yamamoto, M., Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Control of Nonlinear Distributed Parameter Systems, Lecture Notes in Pure and Appl. Math., Vol. 218, Marcel-Dekker, New York, 2001, 113–137.

[7]

Imanuvilov Inverse Problems, 2003, 19: 157

[8]

Isakov Comm. Partial Differential Equations, 1989, 14: 465

[9]

Isakov, V., Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 1998.

[10]

Isakov, V., Carleman type estimates and their applications, New Analytic and Geometric Methods in Inverse Problems, Springer-Verlag, Berlin, 2004, 93–125.

[11]

Khaidarov Math. USSR Sbornik, 1987, 58: 267

[12]

Khaidarov, A., On stability estimates in multidimensional inverse problems for differential equations (English translation), Soviet Math. Dokl., 1989, 614–617.

[13]

Klibanov Inverse Problems, 1992, 8: 575

[14]

Klibanov, M. V. and Timonov, A. A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrect, 2004.

[15]

Klibanov Appl. Anal., 2006, 85: 515

[16]

Kong, J. A., Electromagnetic Wave Theory, John-Wiley, New York, 1990.

[17]

Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media, Addison-Wesley, Reading, 1960.

[18]

Romanov, V. G., Inverse Problem of Mathematical Physics, VNU Science Press, Utrecht, 1987.

[19]

Romanov Phys. Lett. A, 1989, 138: 459

[20]

Romanov, V. G. and Kabanikhin, S. I., Inverse problems for Maxwell's equations, VSP, Utrecht, 1994.

[21]

Sun Arch. Ration. Mech. Anal., 1992, 119: 71

[22]

Yamamoto Int.J. of Appl. Electromag. and Mech., 1997, 8: 77

[23]

Yamamoto, M., On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Problems, Tomography, and Image Processing, Plenum, New York, 15, 1998, 241–256.

[24]

Yamamoto J. Math. Pure Appl., 1999, 78: 65

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/