Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*

Yuejun Peng , Shu Wang

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 583 -602.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 583 -602. DOI: 10.1007/s11401-005-0556-3
Original Articles

Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*

Author information +
History +
PDF

Abstract

In this paper, the convergence of time-dependent Euler-Maxwell equations tocompressible Euler-Poisson equations in a torus via the non-relativistic limit is studied.The local existence of smooth solutions to both systems is proved by using energy estimates for first order symmetrizable hyperbolic systems. For well prepared initial data theconvergence of solutions is rigorously justified by an analysis of asymptotic expansions upto any order. The authors perform also an initial layer analysis for general initial data andprove the convergence of asymptotic expansions up to first order.

Keywords

Euler-Maxwell equations / Compressible Euler-Poisson equations / Non-relativistic limit / Asymptotic expansion and convergence / 35B40 / 35C20 / 35L60 / 35Q35

Cite this article

Download citation ▾
Yuejun Peng, Shu Wang. Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*. Chinese Annals of Mathematics, Series B, 2007, 28(5): 583-602 DOI:10.1007/s11401-005-0556-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besse Math. ModelsMethods Appl. Sci., 2004, 14: 393

[2]

Brenier Comm.Partial Differential Equations, 2000, 25: 737

[3]

Brézis C. R. Acad. Sci. Paris, 1995, 321: 953

[4]

Chen, F., Introduction to Plasma Physics and Controlled Fusion, Vol. 1, Plenum Press, New York, 1984.

[5]

Chen Transport Theoryand Statistical Physics, 2000, 29: 311

[6]

Cordier Comm. Partial Differential Equations, 2000, 25: 1099

[7]

Evans, L. C., Partial Differential Equations, A. M. S., Springer-Verlag, New York, 1999.

[8]

Klainerman Comm. Pures Appl. Math., 1981, 34: 481

[9]

Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,Springer-Verlag, New York, 1984.

[10]

Markowich, P., Ringhofer, C. A. and Schmeiser, C., Semiconductor Equations, Springer-Verlag, New York,1990.

[11]

Peng Asymptotic Anal., 2003, 36: 75

[12]

Peng Asymptotic Anal., 2005, 41: 141

[13]

Rishbeth, H. and Garriott, O. K., Introduction to Ionospheric Physics, Academic Press, New York, 1969.

[14]

Simon Ann. Math. Pura Appl., 1987, 146: 65

[15]

Slemrod J. Nonlinear Sciences, 2001, 11: 193

[16]

Stein, E., Singular Integrals and Differentiability, Princeton, Princeton Univ. Press, New Jersey, 1970.

[17]

Wang Comm. Partial Differential Equations, 2004, 29: 419

[18]

Wang Comm. Partial Differential Equations, 2006, 31: 571

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/