A Γ-Convergence Result for Thin Curved Films Bonded to a Fixed Substrate with a Noninterpenetration Constraint

Hamdi Zorgati

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 615 -636.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 615 -636. DOI: 10.1007/s11401-005-0554-5
Original Articles

A Γ-Convergence Result for Thin Curved Films Bonded to a Fixed Substrate with a Noninterpenetration Constraint

Author information +
History +
PDF

Abstract

The behavior of a thin curved hyperelastic film bonded to a fixed substrate is described by an energy composed of a nonlinearly hyperelastic energy term and a debonding interfacial energy term. The author computes the Γ-limit of this energy under a noninterpenetration constraint that prohibits penetration of the film into the substrate without excluding contact between them.

Keywords

Γ-Convergence / Thin curved films / Noninterpenetration constraint / 49J45 / 74K35

Cite this article

Download citation ▾
Hamdi Zorgati. A Γ-Convergence Result for Thin Curved Films Bonded to a Fixed Substrate with a Noninterpenetration Constraint. Chinese Annals of Mathematics, Series B, 2006, 27(6): 615-636 DOI:10.1007/s11401-005-0554-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acerbi J. Elasticity, 1991, 25: 137

[2]

Acerbi Arch. Ration. Mech. Anal., 1984, 86: 125

[3]

Ball Proc. Roy. Soc. Edinburgh, 1981, 88A: 315

[4]

Bhattacharya Arch. Ration. Mech. Anal., 2002, 161: 205

[5]

Braides Indiana Univ. Math. J., 2001, 49: 1367

[6]

Ciarlet C. R. Acad. Sci. Paris, Série I, 1984, 298: 189

[7]

Ciarlet Arch. Ration. Mech. Anal., 1985, 87: 319

[8]

Ciarlet C. R. Acad. Sci. Paris, Série I, 1985, 301: 621

[9]

Ciarlet Arch. Ration. Mech. Anal., 1987, 97: 171

[10]

Dacorogna, B., Direct methods in the calculus of variations, Applied Mathematical Sciences, Springer-Verlag, Berlin, 1978.

[11]

Dal Maso, G., An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1993.

[12]

Ekeland, I. and Temam, R., Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974.

[13]

Giaquinta Calc. Var. Partial Differential Equations, 1994, 2: 65

[14]

Le Dret J. Math. Pures Appl., 1995, 74: 549

[15]

Le Dret J. Nonlinear Sci, 1996, 6: 59

[16]

Tang Proc. Roy. Soc. Edinburgh Sect. A, 1988, 109: 79

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/