A priori Estimates and Existence for a Class of Fully Nonlinear Elliptic Equations in Conformal Geometry*

Xu-Jia Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 169 -178.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 169 -178. DOI: 10.1007/s11401-005-0529-6
Original Articles

A priori Estimates and Existence for a Class of Fully Nonlinear Elliptic Equations in Conformal Geometry*

Author information +
History +
PDF

Abstract

In this paper we prove the interior gradient and second derivative estimates for a class of fully nonlinear elliptic equations determined by symmetric functions of eigenvalues of the Ricci or Schouten tensors. As an application we prove the existence of solutions to the equations when the manifold is locally conformally flat or the Ricci curvature is positive.

Keywords

Conformal geometry / Elliptic equation / Ricci curvature / 53A30 / 58J05

Cite this article

Download citation ▾
Xu-Jia Wang. A priori Estimates and Existence for a Class of Fully Nonlinear Elliptic Equations in Conformal Geometry*. Chinese Annals of Mathematics, Series B, 2006, 27(2): 169-178 DOI:10.1007/s11401-005-0529-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin, T., Some Nonlinear Problems in Riemannian Geometry, Springer, 1998.

[2]

Caffarelli Acta Math., 1985, 155: 261

[3]

Chang J. Anal. Math., 2002, 87: 151

[4]

Chen, S., Local estimates for some fully nonlinear elliptic equation, preprint, September, 2005.

[5]

Chou Comm. Pure Appl. Math., 2001, 54: 1029

[6]

Gerhardt J. Diff. Geom., 1996, 43: 612

[7]

Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer, 1983.

[8]

Guan, P. and Wang, G., Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not., 2003, 1413-1432.

[9]

Guan J. Reine Angew. Math., 2003, 557: 219

[10]

Guan J. Diff. Geom., 1998, 48: 205

[11]

Gursky, M. and Viaclovsky, J., Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann. Math., to appear.

[12]

Gursky, M. and Viaclovsky, J., Convexity and singularities of curvature equations in conformal geometry, arXiv:math.DG/0504066.

[13]

Ivochkina Mat. Sb., 1985, 128: 403

[14]

Krylov Trans. Amer. Math. Soc., 1995, 347: 857

[15]

Li Comm. Pure Appl. Math., 2003, 56: 1416

[16]

Li, A. and Li, Y. Y., On some conformally invariant fully nonlinear equations II, Liouville, Harnack, and Yamabe, Acta Math., to appear.

[17]

Li, Y. Y., Degenerate conformal invariant fully nonlinear elliptic equations, arXiv:math.AP/0504598.

[18]

Sheng, W. M., Trudinger, N. S. and Wang, X.-J., The Yamabe problem for higher order curvatures, arXiv:math.DG/0505463.

[19]

Schoen, R. and Yau, S.-T., Lectures on Differential Geometry, International Press, 1994.

[20]

Trudinger Ann. of Math., 1999, 150: 579

[21]

Trudinger, N. S. and Wang, X.-J., On Harnack inequalities and singularities of admissible metrics in the Yamabe problem, arXiv:math.DG/0509341.

[22]

Viaclovsky Comm. Anal. Geom., 2002, 10: 815

[23]

Ye J. Diff. Geom., 1994, 39: 35

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/