Analytic Extension of Functions from Analytic Hilbert Spaces*
Kai Wang
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (3) : 321 -326.
Analytic Extension of Functions from Analytic Hilbert Spaces*
Let M be an invariant subspace of $H^{2}_{v} $. It is shown that for each f ∈ M ⊥, f can be analytically extended across ∂${\partial \mathbb{B}_{d} } \mathord{\left/ {\vphantom {{\partial \mathbb{B}_{d} } {\sigma {\left( {S_{{z_{1} }} , \cdots ,S_{{z_{d} }} } \right)}}}} \right. \kern-\nulldelimiterspace} {\sigma {\left( {S_{{z_{1} }} , \cdots ,S_{{z_{d} }} } \right)}}.$
Analytic Hilbert space / Spectrum / Analytic extension / 47B35 / 47B20
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Chen, X. and Guo, K., Analytic Hilbert Modules, π-Chapman & Hall/CRC Reserarch Notes in Mathematics, 433, 2003 |
| [5] |
Duren, P. and Schuster, A., Bergman Spaces, Math. Surveys and Monographs, 100, A.M.S., Providence,RI, 2004 |
| [6] |
Eschmeier, J. and Putinar, M., Spectral Decompositions and Analytic Sheaves, London Mathematical Society Monographs New Series, 10, Clarendon Press, Oxford, 1996 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000 |
| [14] |
Rudin, W., Function Theory in the Unit Ball of Cn, Springer Verlag, New York, 1980 |
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |