Codimension Two PL Embeddings of Spheres withNonstandard Regular Neighborhoods*

Matija Cencelj , Dušan Repovš , Arkadiy B. Skopenkov

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 603 -608.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 603 -608. DOI: 10.1007/s11401-005-0476-2
Original Articles

Codimension Two PL Embeddings of Spheres withNonstandard Regular Neighborhoods*

Author information +
History +
PDF

Abstract

For a given polyhedron KM, the notation R M(K) denotes a regular neigh-borhood of K in M. The authors study the following problem: find all pairs (m, k)such that if K is a compact k-polyhedron and M a PL m-manifold, then R M(f(K)) ≅ R M(g(K)) for each two homotopic PL embeddings f, g : KM. It is proved that R S k+2 (S k) ≇ S k × D 2 for each k ≥ 2 and some PL sphere S kS k +2 (even for any PLsphere S kS k +2 having an isolated non-locally flat point with the singularity S k -1S k +1 such that π1(S k +1S k -1) ≇ ℤ).

Keywords

Embedding / Regular neighborhood / Dehn surgery / Fundamental group / 57M25 / 57Q40 / 57M05 / 57N40

Cite this article

Download citation ▾
Matija Cencelj, Dušan Repovš, Arkadiy B. Skopenkov. Codimension Two PL Embeddings of Spheres withNonstandard Regular Neighborhoods*. Chinese Annals of Mathematics, Series B, 2007, 28(5): 603-608 DOI:10.1007/s11401-005-0476-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Casler Proc. Amer. Math. Soc., 1965, 16: 559

[2]

Cavicchioli Ann. Mat. Pura Appl., 1992, 162: 157

[3]

Cavicchioli Fund. Math., 1994, 145: 79

[4]

Cavicchioli Banach Center Publ., 1998, 42: 49

[5]

Cavicchioli Boll. Unione Mat.Ital., 1997, A11: 775

[6]

Fox Osaka J. Math., 1966, 3: 257

[7]

Gabai Bull. Amer. Math. Soc., 1986, 15: 83

[8]

Gabai J. Diff. Geom., 1987, 26: 479

[9]

Haefliger Ann. of Math., 1962, 75: 231

[10]

Horvatić Berichte D. Math.-Stat. Sektion imForschungszentrum Graz, 1985, 251: 1

[11]

Horvatić, K., Classical Problems of Geometric Topology (in Croatian), Tehnička knjiga, Zagreb, 1990.

[12]

Hsiang Topology, 1965, 3: 173

[13]

Hudson, J. F. P., Piecewise-Linear Topology, Benjamin, New York, Amsterdam, 1969.

[14]

Kervaire Ann. of Math., 1959, 62: 345

[15]

Kervaire, M. A., On higher dimensional knots, Di_erential and Combinatorial Topology, A Symposium inHonor of Marston Morse, S. S. Cairns (ed.), Princeton Univ. Press, Princeton, 1965, 105–119.

[16]

Lickorish Trans. Amer.Math. Soc., 1969, 139: 207

[17]

Massey Proc. Amer. Math. Soc., 1959, 10: 959

[18]

Massey Pacific J. Math., 1969, 31: 133

[19]

Matveev Mat. Sbornik, 1973, 92: 282

[20]

Milgram Topology, 1971, 10: 299

[21]

Mitchell Bull. Acad. Polon. Sci., 1989, 37: 563

[22]

Onischenko Contemporary Math., 2001, 288: 396

[23]

Repovš Suppl. Rend. Circ. Mat. Palermo, 1988, 18: 415

[24]

Repovš Topol.Appl., 1999, 94: 307

[25]

Rohlin Dokl. Akad. Nauk SSSR, 1970, 191: 27

[26]

Rolfsen, D., Knots and Links, Publish or Perish, Berkeley, 1976.

[27]

Rourke Ann. of Math., 1968, 87: 1

[28]

Rourke, C. P. and Sanderson, B. J., Introduction to Piecewise-Linear Topology, Ergebn. der Math., 69,Springer-Verlag, Berlin, 1972.

[29]

Wall Proc. Camb. Phil. Soc., 1967, 63: 5

[30]

Zeeman Ann. of Math., 1963, 78: 501

[31]

Zeeman Topology, 1964, 2: 341

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/