Codimension Two PL Embeddings of Spheres withNonstandard Regular Neighborhoods*
Matija Cencelj , Dušan Repovš , Arkadiy B. Skopenkov
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (5) : 603 -608.
Codimension Two PL Embeddings of Spheres withNonstandard Regular Neighborhoods*
For a given polyhedron K ⊂ M, the notation R M(K) denotes a regular neigh-borhood of K in M. The authors study the following problem: find all pairs (m, k)such that if K is a compact k-polyhedron and M a PL m-manifold, then R M(f(K)) ≅ R M(g(K)) for each two homotopic PL embeddings f, g : K → M. It is proved that R S k+2 (S k) ≇ S k × D 2 for each k ≥ 2 and some PL sphere S k ⊂ S k +2 (even for any PLsphere S k ⊂ S k +2 having an isolated non-locally flat point with the singularity S k -1 ⊂ S k +1 such that π1(S k +1 – S k -1) ≇ ℤ).
Embedding / Regular neighborhood / Dehn surgery / Fundamental group / 57M25 / 57Q40 / 57M05 / 57N40
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Horvatić, K., Classical Problems of Geometric Topology (in Croatian), Tehnička knjiga, Zagreb, 1990. |
| [12] |
|
| [13] |
Hudson, J. F. P., Piecewise-Linear Topology, Benjamin, New York, Amsterdam, 1969. |
| [14] |
|
| [15] |
Kervaire, M. A., On higher dimensional knots, Di_erential and Combinatorial Topology, A Symposium inHonor of Marston Morse, S. S. Cairns (ed.), Princeton Univ. Press, Princeton, 1965, 105–119. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Rolfsen, D., Knots and Links, Publish or Perish, Berkeley, 1976. |
| [27] |
|
| [28] |
Rourke, C. P. and Sanderson, B. J., Introduction to Piecewise-Linear Topology, Ergebn. der Math., 69,Springer-Verlag, Berlin, 1972. |
| [29] |
|
| [30] |
|
| [31] |
|
/
| 〈 |
|
〉 |