Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip*

Shuliang Shui , Deming Zhu

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 657 -674.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 657 -674. DOI: 10.1007/s11401-005-0472-6
Original Articles

Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip*

Author information +
History +
PDF

Abstract

Heteroclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near a rough heteroclinic loop. This heteroclinic loop has a principal heteroclinic orbit and a non-principal heteroclinic orbit that takes orbit flip. The existence, nonexistence, coexistence and uniqueness of the 1-heteroclinic loop, 1-homoclinic orbit and 1-periodic orbit are studied. The existence of the two-fold or three-fold 1-periodic orbit is also obtained.

Keywords

Bifurcation / Heteroclinic loop / Non-resonance / Orbit flip / Periodic orbit / 34C37 / 37C29 / 34C23

Cite this article

Download citation ▾
Shuliang Shui, Deming Zhu. Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip*. Chinese Annals of Mathematics, Series B, 2006, 27(6): 657-674 DOI:10.1007/s11401-005-0472-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chow J. Dyna. Syst. and Differential Equations, 1990, 12: 177

[2]

Deng J. Differential Equations, 1989, 79: 189

[3]

Gruendler SIAM J. Math. Anal., 1992, 23: 702

[4]

Gruendler J. Differential Equations, 1995, 122: 1

[5]

Homburg J. Dynam. Differential Equations, 2000, 12: 807

[6]

Jin Chin. Ann. Math., 2000, 21B: 201

[7]

Jin Chin. Ann. Math., 2001, 22A: 801

[8]

Jin Acta Math. Sinica, English Series, 2002, 18: 199

[9]

Jin Science in China, Series A, 2003, 46: 459

[10]

Jin Chin. Ann. Math., 2003, 24B: 85

[11]

Kisaka J. Dynam. Differential Equations, 1993, 5: 305

[12]

Oldeman Nonlinearity, 2001, 14: 597

[13]

Palmer J. Differential Equations, 1984, 55: 225

[14]

Sandstede J. Dynam. Differential Equations, 1997, 9: 269

[15]

Shui Chin. Ann. Math., 2004, 25B: 555

[16]

Shui Science in China, Series A, 2005, 48: 248

[17]

Tian Science in China, Series A, 2000, 43: 818

[18]

Zhu Acta Math. Sinica, New Series, 1998, 14: 341

[19]

Zhu Science in China, Series A, 1998, 41: 837

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/