Weak Solutions for the Vlasov-Poisson Initial-Boundary Value Problem with Bounded Electric Field

Mihai Bostan

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 389 -420.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 389 -420. DOI: 10.1007/s11401-005-0448-6
Original Articles

Weak Solutions for the Vlasov-Poisson Initial-Boundary Value Problem with Bounded Electric Field

Author information +
History +
PDF

Abstract

The aim of this work is to construct weak solutions for the three dimensional Vlasov-Poisson initial-boundary value problem with bounded electric field. The main ingredient consists of estimating the change in momentum along characteristics of regular electric fields inside bounded spatial domains. As direct consequences, the propagation of the momentum moments and the existence of weak solution satisfying the balance of totalenergy are obtained.

Keywords

Vlasov-Poisson equations / Vlasov-Maxwell equations / Weak solutions / 35F30 / 35L40

Cite this article

Download citation ▾
Mihai Bostan. Weak Solutions for the Vlasov-Poisson Initial-Boundary Value Problem with Bounded Electric Field. Chinese Annals of Mathematics, Series B, 2007, 28(4): 389-420 DOI:10.1007/s11401-005-0448-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Degond Math. Methods. Appl. Sci., 1986, 8: 533

[2]

Bostan C. R. Acad. Sci. Paris, Sér. I, 2005, 340: 803

[3]

Arseneev Comp. Math. Math. Phys., 1975, 15: 131

[4]

Horst Math. Methods Appl. Sci., 1984, 6: 262

[5]

Ukai Osaka J. Math., 1978, 15: 245

[6]

Horst Math. Methods Appl. Sci., 1981, 3: 229

[7]

Batt J. Differential Equations, 1977, 25: 342

[8]

Pfaffelmoser J. Differential Equations, 1992, 95: 281

[9]

Bardos Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1985, 2: 101

[10]

Schaeffer Comm. Partial Differential Equations, 1991, 16: 1313

[11]

Schaeffer J. Differential Equations, 1987, 69: 111

[12]

Lions Invent. Math., 1991, 105: 415

[13]

Diperna Comm. Pure Appl. Math., 1989, XVII: 729

[14]

Glassey Arch. Rational Mech. Anal., 1998, 141: 331

[15]

Glassey Arch. Rational Mech. Anal., 1998, 141: 355

[16]

Glassey Arch. Rational Mech. Anal., 1986, 92: 56

[17]

Glassey J. Fac. Sci. Tokyo, 1989, 36: 615

[18]

Klainerman Comm. Pure Appl. Anal., 2002, 1: 103

[19]

Bouchut Arch. Rational Mech. Anal., 2003, 170: 1

[20]

Ben Abdallah Math. Methods Appl. Sci., 1994, 17: 451

[21]

Guo Comm. Math. Phys., 1993, 154: 245

[22]

Greengard Comm. Pure and Appl. Math., 1990, XLIII: 473

[23]

Poupaud Forum Math., 1992, 4: 499

[24]

Degond Asymptotic Anal., 1991, 4: 187

[25]

Guo Arch. Rational Mech. Anal., 1995, 131: 241

[26]

Bostan SIAM J. Math. Anal., 2003, 35: 922

[27]

Bostan C. R. Acad. Sci. Paris, Sér. I, 2004, 339: 451

[28]

Bardos Ann. Sci. Ecole Norm. Sup., 1969, 3: 185

[29]

Aubin C. R. Acad. Sci. Paris, 1963, 256: 5042

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/